Поиск аномалий в фотометрических каталогах переменных звезд

ГАИШ: Константин Маланчев, Мария Пружинская, Матвей Корнилов Université Clermont Auvergne: Emille Ishida, Florian Mondon, Sreevarsha Sreejith ИКИ РАН: Алина Вольнова ЦАГИ: Владимир Королёв Cinimex: Анастасия Маланчева Washington State University: Shubhomoy Das

Микросеминар отдела релятивистской астрофизики ГАИШ, 22 октрябя 2019

SNAD Team

Sternberg Astronomical Institute MSU, 2018

Laboratoire de Physique de Clermont, 2019

Machine learning is a study of algorithms that computers use to build a model from input data

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E"

— Tom M. Mitchell, «Machine Learning», 1997

Why Machine Learning

- LSST: photometry for ~ $5 \cdot 10^8$ objects, ~ $4 \cdot 10^6$ spectra
- GAIA DR2: coordinates, proper motions and photometry for $\sim 10^9$ stars
- ZTF DR1: ~10^{11.5} individual photometry measurements for ~10^9 transient objects for less than a year of observations
- LSST (prediction): ~ 10^{10} galaxies, ~ 10^{10} stars, ~ 10^7 supernova, ~100 PB of data for ten years of observations

Anomalies

- Observation or data reduction artefacts
- Misclassified objects, i.e. active galaxy nuclei in supernova catalog
- Rare class of objects, i.e. micro-quasar in variable star catalog or gamma ray burst in supernova catalog
- New physics \bullet

Definition of an anomaly depends on a problem. In astrophysics it could be:

Machine gives an outlier, expert makes it an anomaly

Outliers

•01

►X

Chandola V., et al. 2009

We search anomalies in light curve data bases

Open Supernova Catalog

- https://sne.space (Guillochon et al. 2017) \bullet
- ~55 000 of supernovae and candidates
- ~600 000 of photometric measurements
- ~20 000 спектров

Has light curve and spectra Has light curve only Has spectra only No light curve or spectra

OSC: Data

OSC:

- ~55000 of objects
- Heterogeneous data
- Different passbands
- Observations without errors
- Upper limits
- Light curves are unevenly time series

Our data sample:

- 1999 of objects
- gri, g'r'i' and $BRI \rightarrow gri$
- Min 3 points per passband
- Only observations with errors
- Upper limits are used
- Approximation via Gaussian processes

Gaussian Processes

http://gp.snad.space

$BRI \rightarrow gri$

Dimensionality Reduction: t-SNE

http://scikit-learn.org

OSC: 10 Feature Sets

- 1. 364 Gaussian processes approximated points: 3 passbands \times 121 points $\in [-20; 100]$ days after peak in r normalised to peak, peak flux
- 10 parameters of Gaussian process fit: 6 values of correlation matrix,
 3 lengths of kernels, likelihood
- Nine datasets obtained by reducing 374 Gaussian process features to 2–9 t-SNE dimensions

Isolation Forest

Isolation Tree

Shallower leaf nodes have higher anomaly scores, whereas, deeper leaf nodes have lower anomaly scores.

Leaf instance

arXiv:1708.09441

arXiv:1905.11516

 x_3

la 91T-like (pecular supernovae)

arXiv:1905.11516

Pecular type II supernovae

arXiv:1905.11516

Super-luminous supernovae

arXiv:1905.11516

Binary microlensing

arXiv:1905.11516

Misclassification of SDSS objects: 10 stars, 6 AGNs

OSC: Results

SN 2006kg

Active Anomaly Detection

- 1. Initialize isolation forest or other ensemble of anomaly detectors, set equal w_i to each detector
- 2. Ask the ensemble for the outlier with the largest score
- 3. Ask an expert to classify the object as normal or anomaly
- 4. If anomaly, go to step 2 and ask next outlier
- 5. If normal, reweight detectors to give lower influence to wrong detectors, go to step 2

Zwicky Transient Facility DR1

- Full light curve catalog contains $\sim 1.6 \cdot 10^9$ of "objects" in g & r collected in 284 days
- Mostly Galactic objects, detected in near-realtime extragalactic transients are excluded
- Raw data are 2 TB, our PostgreSQL database has ~ $5 \cdot 10^{11}$ rows and occupies 4 TB
- We use objects observed in r with at least 100 points covering at least 200 days. Totally ~8 \cdot 10⁷ light curves

Samuel Oschin 48-inch Schmidt telescope

ZTF DR1: Feature Extraction

Totally three dozens of features are used

- Magnitude distribution features: amplitude, sample moments, Cusum (Kim et al. 2014), Stetson (1996) K, ...
- Light curve shape features: maximum slope, linear trend, linear least square fit, ...
- Periodogram based features: peak period, peak significance, periodogram shape based features

ZTF DR1: Object Viewer

ZTF object viewer

oid	GO	
Coordinates or obje	1	GO

680113300005170

mjd – 58000

Metadata

nobs: 36

ngoodobs: 33

filter: zg

coord_string: 254.45753, 35.34235

duration: 182.660

fieldid: 680

rcid: 50

o Q 🕂

10

Designation

HZ Her

10

Designation

<u>15037</u>

	search radius	search radius, arcsec					
)	Separation, arcsec	Period, days	<u>Type of variability</u>	Spectral type			
	0.740	1.700	XPR+E	B0Ve-F5e			

AAVSO VSX

search radius, arcsec								
ì	Separation, arcsec	Name	Period, days	<u>Variability type</u>	Maximum mag	Band of max mag	Minimum mag	Band ofmin mag
	0.748	HZ Her	34.875	LMXB:/XPR+E	12.800	В	15.200	В

http://ztf.snad.space

830213400008915

mjd – 58000

831216400016457

mjd – 58000

768201400047639

mjd – 58000

768201400047639

mjd – 58000

768201400047639

Thank you for your attention