ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Астрономическая обсерватория им. В.П.Энгельгардта

На правах рукописи

ВАРАКСИНА НАТАЛЬЯ ЮРЬЕВНА

СОЗДАНИЕ НАВИГАЦИОННОЙ ОПОРНОЙ СЕТИ НА ПОВЕРХНОСТИ ЛУНЫ В ФУНДАМЕНТАЛЬНОЙ СИСТЕМЕ КООРДИНАТ

Специальность 01.03.01 - астрометрия и небесная механика

Диссертация на соискание ученой степени

кандидата физико-математических наук

Научный руководитель –

доктор физико-математических наук,

профессор Ю.А. Нефедьев

КАЗАНЬ - 2013

оглавление

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ	2 4
Анализ динамической и геометрической фигуры Луны	22
Задачи лунной астрометрии	22
Решение современных вопросов лунной селеноографии на	
основе космических миссий	23
Анализ динамической и геометрической фигуры Луны	32
Описание моделей, методов и программного обеспечения	
гармонического анализа лунного рельефа	35
Построение модели лунного рельефа	38
Алгоритм оценивания амплитуд гармоник	38
Информационные и программные подходы к обработке	00
селенографических данных	40
Результаты определения вектора смещения центра фигуры	10
относительно ее центра масс	42
Опорная селеноцентрическая сеть в краевой зоне Луны	47
Селенографические модели краевой зоны Луны	47
Система координат Гайна	53
Каталог объектов в либрационной зоне Луны	56
Построение опорного каталога объектов на поверхности Луны	20
в небесной системе координат	62
Селенографические каталоги лунных объектов	62
Селенографические системы координат	70
Пстроение фндаментального каталога положений точек	10
лунной поверхности	76
Исследование фундаментального каталога опорных точек на	10
лунной поверхности	83
Создание модели макрофигуры лунного диска	87
Методы построения моделей макрофигуры Луны	87
	 ОГЛАВЛЕНИЕ

4.2	Современные модели макрофигуры Луны	90
4.3	Построение модели макрофигуры Луны по данным каталога	
	селеноцентрических опорных точек	95
	Заключение	103
	Литература	111
	Приложение	128

введение

АКТУАЛЬНОСТЬ РАБОТЫ. Современные экспериментальные исследования внешних и внутренних характеристик Луны связаны с планами её освоения в ближайшем будущем. В течение последних двух десятилетий Луна является объектом всестороннего исследования, о чем свидетельствует большой ряд космических экспериментов, таких как лазерная локация Луны (ЛЛЛ) (1969-2012), космические миссии Лунар Проспектор (1998-1999) [111] и Клементина (1994) [138]. Серия космических программ, направленных на всестороннее изучение естественного спутника Земли, стартовала в начале нового тысячелетия. Необходимо отметить такие космические проекты, как миссии СМАРТ-1 (европейский спутник, 2003-2006), Кагуя (японский спутник, 2007-2009) [127], Чанг-1 (китайский зонд, 2007-2009), Чанг-2 (китайский зонд, 2010) [112], Чандраан-1 (индийский спутник, 2008-2009), Чандраан-2 (индийский спутник, 2013) [111], ЛРО-ЛЛКРОСС (американские спутники, 2009-2012) [111]. Программа исследований включала создание селенографической картографической системы, исследование внутреннего строения Луны [151], изучение тонких эффектов физической либрации во вращательном движении нашего естественного спутника, использование межспутникового слежения с целью исследования гравитационного поля Луны [152]. На основе космических миссий Американским космическим агентством НАСА создана карта Южного полюса Луны, которая в настоящее время является самой подробной по отображению физической поверхности Луны, но не имеющей достаточно определенной поверхности отсчета координат. Новые важные данные были получены аппаратом «Lunar Reconnaissance Orbiter» (LRO), вращающимся вокруг Луны по полярной орбите. Радиотелескоп Goldstone Solar System Radar, находящийся в Калифорнии, позволяет проводить высокоточное изучение поверхности кратеров. Лунные аппараты LRO и LCROSS были первым масштабным шагом НАСА в рамках новой лунной программы США «Созвездие»

(Constellation). С помощью LRO ученые составили карту радиоактивности лунной поверхности и осуществили поиск источников водных ресурсов на Луне. В ближайшее время планируется запуск кинайского космического спутника «Чанъэ-3», а в дальнейшем и высадка человека на Луну и, как итог, создание к 2030г. обитаемой лунной базы. Она будет использоваться для запуска пилотируемых космических аппаратов к другим планетам, и первой такой планетой должен стать Марс.

Важными источниками информации о параметрах динамической фигуры Луны, несомненно, стали космические миссии Клементина и Лунар Проспектор. Необходимо также отметить японскую миссию СЕЛЕНА (Кагуйа) [110, 115, 125], которая обеспечила получение высокоточной топографической информации обо всей лунной поверхности, включая ранее недоступные области обратной стороны и краевой зоны Луны, и на основе наблюденных данных была построена карта гравитационного поля [103]. Серия китайских спутников Чанг [112] и индийских Чандраан [111] позволили получить новые данные о геохимическом составе, коре, гравитационном поле, масконах, поверхностного И окололунного пространства. В ближайшие 10 лет планируется также осуществление Российской программы исследования Луны [154]. На 2014-2016 гг. запланированы две космические миссии - российская «Луна-Глоб» и российско-индийская «Луна-Ресурс». Программа предусматривает доставку с Луны на Землю воды и других летучих веществ, а также изучение полюсов Луны. Эта программа открывает широкие перспективы дальнейших исследований Луны. В рамках этой программы предполагается посадка на лунную поверхность луноходов нового поколения для сбора образцов пород из наиболее интересных лунных районов, сопровождаемая в дальнейшем их доставкой на землю возвратной ракетой. Запуск «Луна-Глоб» ознаменует собой «возвращение России на Луну» и даст возможность дальнейших ее исследований. Запланированные исследования нашего естественного спутника позволят определить количество водных запасов на Луне, что в

свою очередь очень важно для будущего планирования обитаемых лунных баз, которые необходимы для начала эры промышленного освоения Луны и нового большого этапа в изучении космоса [101, 135].

Современные космические технологии предъявляют особые требования к результатам координатно - временного обеспечения [50]. Это в полной К установлению взаимной мере относится ориентации И динамической и инерциальной систем координат, реализации динамических систем отсчета, отнесенных к центру ее масс, изучению динамики и кинематики небесных тел [51]. Также большое значение имеет и разработка точной теории вращения Луны с целью получения расчетных параметров для эффективной навигации и прилунения посадочных модулей на лунноую поверхность. Все это в настоящее время является одними из самых актуальных задач непосредственно связанными с координатно - временным обеспечением.

Настоящая работа посвящена задаче определения селеноцентрической динамической системы координат на лунной поверхности. В настоящее время имеется достаточно большой ряд современных каталогов лунных Тем не менее, проблема создания селеноцентрической опорной объектов. сети, покрывающей всю поверхность Луны, остается до сих пор не решенной с достаточной точностью. Например, созданная опорная сеть на основе данных, полученных с бортов космических кораблей "Аполлон" построена в системе центра масс Луны. Однако, объекты данной сети покрывают ограниченную область лунной поверхности, которая лежит в поясе от -20 до +40 градусов по широте, и самое главное, при расширении данной сети в сторону треугольника, который формируют станции ALSEP. OT установленные на Луне астронавтами миссии Аполлон, возникают большие ошибки в плановых координатах, достигающие величин более 1 км. Также и тот факт, что система координат данной сети необходимо учитывать является квазидинамической, то есть ее оси не совпадают с осями инерции Луны. Другие каталоги также имеют проблемы с системами координат,

положенных в их основу. Это в лучшем случае квазидинамические системы. В настоящее время только каталог «Казань-1162» [49] наилучшим образом удовлетворяет динамическим характеристикам, что подтверждается и в настоящей работе.

В данной работе определение «селеноцентрическая навигационная опорная сеть» означает, что мы произвели попытку создание сети опорных объектов поверхности Луны, которым на К при использовании соответствующих космических методов, будет возможно осуществить привязку с борта космического аппарата и, таким образом, определить заданную поверхность отсчета наблюдаемых данных. Это уже пытаются делать с использованием каталога ULSN2005, что будет описано в первом параграфе первой главы. Под «фундаментальной системой координат» в работе мы считаем систему координат, которая связанна с центром масс Луны и ее осями инерции.

Учитывая все выше сказанное, данная работа направлена на исследование взаимного положения геометрического центра масс Луны относительно ее центра масс, анализ динамической системы координат, создание абсолютной опорной системы объектов в краевой зоне Луны и расширение и сгущения селеноцентрической динамической системы координат для большей части лунной поверхности и построение модели макрорельефа Луны.

ЦЕЛЬ РАБОТЫ состоит в исследовании взаимного положения геометрического центра масс Луны относительно центра фигуры, анализе динамической системы координат, и как итог, создание абсолютной опорной системы объектов в краевой зоне Луны и расширение и сгущения селеноцентрической динамической системы координат для большей части лунной поверхности и построении модели макрорельефа Луны.

В работе были поставлены задачи:

- Выполнение теоретических и практических работ по исследованию современных селенографических каталогов относительно динамической системы координат.
- 2. Развитие метода анализа относительного положения геометрического центра Луны относительно центра масс и его реализация на практике.
- 3. Создание метода построения абсолютного каталога в краевой зоне Луны.
- 4. Построение абсолютного каталога в краевой зоне Луны.
- 5. Развитие метода создания и построения опорного селеноцентрического каталога на основе расширения и сгущения динамической системы координат, имеющего высокие показатели точности и достоверности представленных в нем результатов.
- 6. Создание сводного опорного селеноцентрического каталога.
- 7. Моделирование макрофигуры лунного диска.

Работа носит как теоретический, так и экспериментальный характер: анализ длительных рядов наблюдений и их редукция, развитие методов анализа и обработки экспериментальных данных с целью решения комплексных задач селенодезии.

НАУЧНАЯ НОВИЗНА РАБОТЫ заключается в следующем:

Все результаты, которые приводятся в 6 пунктах результатов, вынесенных на защиту, являются оригинальными и впервые опубликованы в работах автора.

- 1. Создан и реализован новый метод определения относительного положения геометрического центра Луны относительно центра масс на основе гипсометрических данных каталога «Казань-1162» с использованием гармонического анализа.
- Впервые построен абсолютный каталог лунных объектов в ее краевой зоне на основе прямой привязки избранных кратеров к небесной системе координат.
- 3. Создан метод расширения и сгущения селеноцентрических динамических систем координат с использованием робастных подходов [108], построена

новая сводная селеноцентрическая динамическая система лунных объектов и проведен ее анализ.

4. На основе полученных в работе результатов построена новая модель макрофигуры лунного диска.

НАУЧНАЯ ЦЕННОСТЬ И ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ РАБОТЫ

состоит в том, что результаты, полученные в настоящей работе, могут быть использованы при решении широкого круга задач лунной астрометрии и селенодезии.

- Метод определения положения центра масс Луны относительно ее центра фигуры можно использовать в обсерваториях, где ведутся работы по исследованию динамических селенодезических параметров, а методы ее редуцирования можно применять при анализе современных космических каталогов [101].
- 2. Параметры положения центра масс Луны относительно ее центра фигуры и оценка полученных величин.
- Опорная селеноцентрическая динамическая опорная сеть в либрационной зоне Луны может использоваться для решения задачи расширения систем опорных селенодезических сетей с видимой полусферы Луны на ее обратную сторону.
- 4. Новый метод построения опорного селеноцентрического каталога на расширения сгущения селеноцентрической основе И динамической системы координат, имеющего высокую точность и достоверность представленных в нем результатов, может быть применен в дальнейших работах будущих ПО составлению анализа современных И селеноцентрических каталогов.
- 5. Сводный каталог селеноцентрических объектов, построенный в системе центра масс Луны, может использоваться в качестве опорной сети для определения координат объектов обратной стороны Луны, полученных из миссий «Аполлон», «Зонд» и будущих космических экспериментов, а

также могут использоваться для оценки параметров и точности других селенодезических систем.

6. Новые подходы к моделированию макрофигуры лунного диска позволят производить более точный учет возможных отклонений и неточностей, как при картографировании лунной поверхности, так и при редукции наблюдательных данных.

В настоящее время прогресс в области селенодезических исследований может быть достигнут путем разумного сочетания данных космических и наземных наблюдений [72]. Попытка осуществления такого подхода и была предпринята в данной работе.

За цикл работ по селенодезии автор настоящей диссертационной работы была удостоена в 2010 году стипендией мэра города Казани, завоевала I место за лучшую печатную работу Казанского федерального университета в области естественных наук, в 2011 году получила Премию первой степени Академии наук РТ, Стипендию Президента России и премию «50 лучших инновационных идей Республики Татарстан».

Результаты работы могут быть использованы в ГАИШ МГУ, ИНАСАН, ГАО РАН, ИКИ РАН, УлГТУ, КФУ, и других научных организациях, занимающихся вопросами современного координатно – временного обеспечения космических полетов.

ДОСТОВЕРНОСТЬ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Достоверность полученных результатов подтверждается:

1) хорошим согласием полученных результатов с выводами ведущих зарубежных ученых;

2) совокупностью используемых в работе точных методов обработки и анализа наблюденных данных;

 большим объемом используемого в обработке практического и информационного материала;

4) проведением контроля точности принятых в обработку данных;

ОСНОВНЫЕ ПОЛОЖЕНИЯ, ВЫНОСИМЫЕ НА ЗАЩИТУ

Все поставленные выше цели успешно достигнуты. На защиту выносятся следующие основные результаты:

- Развитие метода определения параметров положения центра масс Луны относительно ее центра фигуры на основе прямого использования динамической опорной системы объектов, построенной в системе центра масс и главных осей инерции небесного тела. Примененный в работе метод позволяет использовать для определения таких параметров наземные селеноцентрические сети в совокупности с данными космических миссий и, таким образом, проводить анализ этих сетей с точки зрения их квазидинамических характеристик.
- 2. Параметры положения центра масс Луны относительно ее центра фигуры и оценка полученных величин. Было определено, что на основе использования наземного селеноцентрического каталога «Казань-1162» совместно с данными миссии «Клементина» положения центра масс Луны относительно ее центра фигуры имеет следующие относительные значения: Δξ = -1,49; Δη = -0,69; Δζ=0,16, что хорошо согласуется с данными других космических миссий и подтверждает, что система координат каталога «Казань-1162» является динамической.
- 3. Создание метода построения абсолютного каталога в краевой зоне Луны и построение опорной селеноцентрической динамической опорной сети в либрационной зоне Луны. Как известно, опорные селенодезические сети служат для привязки к ним исследуемых координатных систем, но до сих пор в либрационной зоне не было создано такой сети, которая с одной стороны была бы динамической, а с другой стороны позволяла бы осуществлять трансформацию координат между видимой и обратной сторонами Луны.
- Развитие метода построения опорного селеноцентрического каталога на основе расширения и сгущения селеноцентрической динамической системы координат. Данный метод позволяет на основе опорного

селеноцентрического каталога осуществлять трансформацию современных селенографических координатных систем в динамическую систему координат, до настоящего момента такую трансформацию возможно было осуществить только как квазидинамическую систему отсчета данных.

- 5. Сводный опорный селеноцентрический каталог лунных объектов в небесной системе координат. Впервые построена координатная сеть на Луне, которую можно считать динамической, то есть ее оси координат совпадают с осями инерции Луны, а начало координат лежит в ее центре масс.
- 6. Параметры модели макрофигуры лунного диска, полученные на основе анализа сводного опорного селеноцентрического каталога лунных объектов, построенного в небесной системе координат. Данная модель позволила оценить вариации макрофигуры Луны для данной поверхности отсчета высотных данных используемой при наших исследованиях и показала ее хорошее согласие с данными современных космических миссий.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ Статьи в рецензируемых изданиях, рекомендуемых ВАК

- Varaksina, N.Y. ANALYSIS OF DATA OF "CLEMENTINE" AND "KAGUYA" MISSIONS AND "ULCN" AND "KSC-1162" CATALOGUES / Y. Nefedyev, S. Valeev, R. Mikeev, N. Varaksina, A. Andreev // Advanced in Space Research.- 2012.- №50, P.1564–1569. DOI : 10.1016/j.asr.2012.07.012.
- Varaksina, N.Y. The method of a reference selenocentric coordinate system construction for visible and far sides of the Moon referred to the lunar mass center and to its main inertia axes / Yu. Nefedyev, S.Valeev, I. Sharafutdinov, R. Zabbarova, N. Varaksina // Astronomical and Astrophysical Transactions. 2012. V. 27, Issue 3.- P. 503 508.
- Varaksina, N.Y. Modeling of the lunar visible side figure / Yu. Nefedyev, S. Valeev, K. Samokhvalov, I. Sharafutdinov, R. Zabbarova, N. Varaksina //

Astronomical and Astrophysical Transactions. - 2012.- V. 27, Issue 3.- P.509 – 512.

- Varaksina, N.Y. Teaching the courses of astronomy and concepts of modern natural science in Kazan Federal University / Yu. Nefedyev, R. Zabbarova, M. Kutlenkov, N. Varaksina, K. Churkin // Astronomical and Astrophysical Transactions.- 2012.- V. 27, Issue 3.- P. 545 – 548.
- Вараксина, Н.Ю. Новый метод построения единой селеноцентрической системы координат на поверхности Луны / Ю.А. Нефедьев, С.Г. Валеев, Н.Ю. Вараксина, Р.Р. Заббарова, К.О. Чуркин, В.С. Боровских // Георесурсы.- 2012.- № 1 (43).- С. 44 46.
- Вараксина, Н.Ю. Проблема построения глобальной селеноцентрической системы / Ю. А. Нефедьев, С.Г. Валеев, Н.Ю. Вараксина, Р.Р. Заббарова, В.С. Боровских // Георесурсы (английская версия).- 2012.- 1(12).- Р. 40 42.
- Вараксина, Н.Ю. Особенности динамики рентгеновского излучения астрофизических объектов: 2012 Классификация эффектов статистической памяти / С.А. Дёмин, О.Ю. Панищев, Ю.А. Нефедьев, Н.Ю. Вараксина // Ученые записки Казанского университета. Серия Физико-математические науки. – 2012. – Т. 154(3). – С. 62-74.
- Вараксина, Н.Ю. Метод создания каталога кратеров либрационной зоны Луны / Ю.А. Нефедьев, Л.И. Рахимов, Н.Г. Ризванов, Н.Ю. Вараксина, Р.Р. Заббарова, К.О. Чуркин, В.С. Боровских // Георесурсы.- 2012.- № 1 (43).- С. 62 - 64.
- Вараксина, Н.Ю. Прецессионный метод редукции наблюдений селенодезических объектов в небесной системе координат / Н.Ю.Вараксина // Вестник ТГГПУ.- 2011.- № 3 (25).- С. 26 30.
- Вараксина, Н.Ю. Селеноцентрическая координатная сеть, построенная в системе каталога КСК-1162 / Ю.А. Нефедьев, С.Г. Валеев, И.М. Шарафутдинов, Н.Ю. Вараксина // Ученые записки Казанского университета.- 2011.- Том 153, Кн.2.- С. 150 - 158.

- Вараксина, Н.Ю. Параметры положения центра масс Луны относительно центра ее фигуры на основе данных космических миссий Clementine, Кадиуа и каталога ULCN / С.Г. Валеев, Р.Р. Микеев, Н.Ю. Вараксина, Ю.А. Нефедьев // Ученые записки Казанского университета.- 2011.- Том 153, Кн.2.- С. 158 - 163.
- 12.Вараксина, Н.Ю. Новый метод определения положения центра масс Луны
 / Ю.А. Нефедьев, Н.Ю. Вараксина, С.Г. Валеев, Н.Г. Ризванов, Р.Р. Микеев // Вестник ТГГПУ, №1 (23), 2011, с. 31-35.
- 13.Вараксина, Н.Ю. Построение метода создания единой селеноцентрической системы координат в системе центра масс и главных осей инерции Луны на основе разнородных наблюдений / Ю.А. Нефедьев, Н.Ю. Вараксина, М.В. Кутленков, К.О. Чуркин // Вестник ТГГПУ, ISSN 2074-0239.- 2010.- № 1 (20).- С. 31 33.
- 14.Вараксина, Н.Ю. История солнечных и спектральных исследований в астрономической обсерватории им. В.П. Энгельгардта (АОЭ)/ Ю.А. Нефедьев, И.А. Дубяго, Н.Ю. Вараксина // Кинематика и физика небесных тел.- 2010.- № 6.- С. 48 – 59.
- 15.Вараксина, Н.Ю. Василий Павлович Энгельгардт / Ю.А. Нефедьев, И.А. Дубяго, Н.Ю. Вараксина // Земля и Вселенная.- 2009.- № 1.- С. 37 - 45.
- 16.Вараксина, Н.Ю. Исследование макрофигуры Луны / Н.Ю. Вараксина,
 М.В. Кутленков // Вестник ТГГПУ.- 2008, №4(15).- С. 4 6.

Монографии

- Вараксина, Н.Ю. История астрономии в Казани / Ю.А. Нефедьев, Р.А. Кащеев, Н.Г. Ризванов, О.И. Белькович, И.А. Дубяго, Е.Е. Беляева, Н.Ю. Вараксина // Монография: Изд. КГУ.-2009.- С. 1 - 600.
- Вараксина, Н.Ю. История астрономии в Казани (2-ое издание, дополненное) / Ю.А. Нефедьев, Р.А. Кащеев, Н.Г. Ризванов, О.И. Белькович, И.А.Дубяго, Е.Е. Беляева, В.В. Лапаева, Н.Ю. Вараксина // Монография: Изд. КГУ.-2010.- С. 1 - 440.

В других изданиях:

- Вараксина, Н.Ю. Построение глобальной селеноцентрической опорной координатной системы / Ю.А. Нефедьев, Н.Ю. Вараксина, Р.Р. Заббарова, М.Ю. Кутленков // Известия ГАО РАН 2013 №220.- С. 23 28.
- Вараксина, Н.Ю. Модернизация наблюдательного комплекса АОЭ / В.В. Сасюк, Ю.А. Нефедьев, Н.Ю. Вараксина, К.О. Чуркин // Известия ГАО РАН – 2010 - №219, Т.4.- С. 319 – 323.
- Вараксина, Н.Ю. История научных связей астрономов «северной столицы» и Казани / Ю.А. Нефедьев, Н.Г. Ризванов, И.А. Дубяго, А.И. Галеев, Н.Ю. Вараксина // Известия ГАО РАН 2010 №219, Т.4.- С. 419 427.
- Вараксина, Н.Ю. Построение глобальной селеноцентрической опорной координатной системы / С.Г. Валеев, Ю.А. Нефедьев, Н.Ю. Вараксина // Известия ГАО РАН 2010 №219, Т.4.- С. 57 61.
- Вараксина, Н.Ю. Модернизация наблюдательного комплекса АОЭ для учебных целей / Ю.А. Нефедьев, В.В. Сасюк, Н.Ю. Вараксина // Известия КрАО.- 2009.- Том 104, №6.- С. 217-219.
- Вараксина, Н.Ю. Модель поверхности Луны / Ю.А. Нефедьев, С.Г. Валеев, К.М. Самохвалов, И.М. Шарафутдинов, М.В. Кутленков, Н.Ю. Вараксина // Известия КрАО.- 2009.- Том 104, №6.- С. 206-211.
- Вараксина, Н.Ю. История АОЭ и связи с КрАО / Ю.А. Нефедьев, И.А. Дубяго, Н.Ю. Вараксина // Известия КрАО.- 2009.- Том 104, №6.- С. 199-205.

В сборниках трудов конференций

 Varaksina, N.Y. The modeling of a lunar visible side macrofigure / Y. Nefedjev, S. Valeev, N. Rizvanov, M. Kutlenkov, and N. Varaksina // European Geosciences Union, EGU General Assembly 2009, Vienna, Austria, 19-24 April 2009, Geophysical Research Abstracts.-2009.- Vol. 11.- P. EGU2009-11462.

- Varaksina, N.Y. The construction method of united celenocentric coordinates system for visible and reverse lunar sides, brought to the lunar center masses and main axis of its inertia / Y. Nefedjev, S. Valeev, I. Sharafutdinov , M. Kutlenkov, and N. Varaksina // European Geosciences Union, EGU General Assembly 2009, Vienna, Austria, 19-24 April 2009, Geophysical Research Abstracts.-2009.- Vol. 11.- P. EGU2009-11491.
- Varaksina, N.Y. V.P.Engelhardt EAO founder / Yu. Nefedjev, I. Dubyago, M. Kutlenkov, N. Varaksina // In book: Astrokazan2009.- 2009.- P.24 – 29.
- Varaksina, N.Y. Catalogue of a craters lunar libration zone / Yu. Nefedjev, L. Rakhimov, N. Rizvznov, M. Kutlenkov, N. Varaksina // In book: Astrokazan 2009.- 2009.- P.183 – 184.
- Varaksina, N.Y. The relative position of lunar center masses and centre of the figure in selenocentric catalogues / Yu. Nefedjev, S. Valeev, N. Rizvanov, R. Mikeev, N. Varaksina // In book: Astrokazan2009.- 2009.- P.227 – 229.
- Varaksina, N.Y. Astronomical education in natural science courses / Yu. Nefedjev, V. Sasuk, M. Kutlenkov, N. Varaksina // In book: Astrokazan 2009.-2009.- P.313 – 315.
- Varaksina, N.Y. The obtaining relative position of lunar centre masses and centre of the figure in selenocentric catalogues / Yu.A. Nefedjev, S.G. Valeev, N.G. Rizvanov, R.R. Mikeev, N.Yu. Varaksina // European Geosciences Union, EGU General Assembly 2009, Vienna, Austria, May, 5, 2010, Geophysical Research Abstracts.-2010.- Vol. 12.- P. EGU2010-14967.
- Varaksina, N.Y. The building of the catalogue of a craters lunar libration zone / Yu. Nefedjev, L. Rakhimov, N. Rizvanov, M. Kutlenkov and N.Varaksina // European Geosciences Union, EGU General Assembly 2009, Vienna, Austria, 19-24 May, 5, 2010, Geophysical Research Abstracts.-2010.- Vol. 12.- P. EGU2010-14968.
- Varaksina, N.Y. Making selenocentric reference coordinates net in the dynamic system / Yu. Nefedyev, S. Valeev, I. Sharafutdinov and N. Varaksina // European Planetary Science Congress 2011, EPSC-DPS Joint Meeting, La Cite

Internationale des Congres Nantes Metropole, 03 – 07 October 2011, Nantes, France.-2011.- Vol. 6.- P. EPSC-DPS2011-43.

- Varaksina, N.Y. The building of the occultation observations base / Yu. Nefedyev, N. Varaksina, M. Kutlenkov and K. Churkin // European Planetary Science Congress 2011, EPSC-DPS Joint Meeting, La Cite Internationale des Congres Nantes Metropole, 03 – 07 October 2011, Nantes, France.-2011.- Vol. 6.- P. EPSC-DPS2011-135.
- Varaksina, N.Y. Extention and distribution of Kazan selenocentric reference system / Yu. Nefedjev, S. Valeev, I. Sharafutdinov, N. Varaksina // In book: Astrokazan2011.- 2011.- P.61 – 64.
- Varaksina, N.Y. The relative position of lunar center masses and center of the figure in selenocentric catalogues / Yu. Nefedjev, S. Valeev, N. Rizvanov, R. Mikeev, N. Varaksina // In book: Astrokazan2011.- 2011.- P.119 – 120.
- Varaksina, N.Y. The catalogue of a craters lunar libration zone / Yu. Nefedjev,
 L. Rakhimov, N. Rizvanov, M. Kutlenkov, N. Varaksina // In book: Astrokazan2011.- 2011.- P.120 – 121.
- Varaksina, N.Y. The occultation observations base / Yu. Nefedjev, M. Kutlenkov, N. Varaksina, K. Churkin // In book: Astrokazan2011.- 2011.-P.121 – 126.
- 15. Вараксина, Н.Ю. Построение глобальной селеноцентрической опорной координатной системы / Ю.А. Нефедьев, С.Г. Валеев, Н.Ю. Вараксина // Тезисы докладов Всероссийской астрометрической конференции «Пулково 2009» 15-19 июня 2009 г. С.Петербург, ГАО РАН .- 2009.- С. 35-36.
- 16. Вараксина, Н.Ю. История научных связей астрономов «Северной столицы» и Казани / Ю.А. Нефедьев, Н.Г. Ризванов, И.А. Дубяго, А.И. Галеев, Н.Ю. Вараксина // Тезисы докладов Всероссийской астрометрической конференции «Пулково 2009» 15-19 июня 2009 г. С.Петербург, ГАО РАН .- 2009.- С. 66.

- 17. Вараксина, Н.Ю. Применение информационных технологий и систем при формировании научно-методической базы данных АОЭ / Ю.А. Нефедьев, Н.Г. Ризванов, И.А. Дубяго, М.В. Кутленков, Н.Ю. Вараксина, К.О. Чуркин // Сборник научных трудов Всероссийской конференции с элементами научной школы для молодежи «Проведение научных исследований в области обработки, хранения, передачи и защиты информации», 1-5 декабря 2009 г., Россия, Ульяновск.- 2009.- Т.2.- С. 367 – 373.
- Вараксина, Н.Ю. Создание глобальной селеноцентрической опорной системы координат / Ю.А. Нефедьев, С.Г. Валеев, Н.Ю. Вараксина, К.О. Чуркин // Тезисы докладов Всероссийской астрономической конференции «От эпохи Галилея до наших дней», Нижний Архыз (САО), 12-19 сентября 2010, ВАК-2010.- 2010.- С. 51.
- 19. Вараксина, Н.Ю. Космический туризм в Казани / Ю.А. Нефедьев, И.А. Дубяго, А.В. Гусев, Н.Ю. Вараксина // Тур фактор: Материалы третьей международной научно-практической конференции «Комплексное развитие перспективных туристских центров: новые подходы и решения», Казань 16-17 апреля 2010. 2010. С. 52 55.
- 20. Вараксина, Н.Ю. Метод построения единой селеноцентриеской опорной системы координат / Ю.А. Нефедьев, С.Г. Валеев, Н.Ю. Вараксина // Материалы Международной научно-практической конференции «Спецпроект: анализ научных достижений», Украина, г. Днепропетровск, 30-31 мая 2011.-2011.- Том 3.- Стр. 88-90.
- 21. Вараксина, Н.Ю. Система космической навигации на Луне / Ю.А. Нефедьев, Н.Ю. Вараксина // Сборник тезисов лучших докладов XXX Научной конференции молодых ученых и специалистов, посвященных Году учителя в Российской Федерации и Республике Татарстан, Казань – 2010. – С. 18-19.
- 22. Вараксина, Н.Ю. Анализ космических и наземных селенографических опорных сетей/ Н.Ю. Вараксина, Ю.А. Нефедьев, Р.Р. Заббарова, К.О.

Чуркин // Всероссийская астрометрическая конференция «Пулково-2012» 1-5 октября 2012 года.- 2012.- С. 8.

Публикации в электронных ресурсах

 Вараксина, Н.Ю. Каталог селеноцентрических опорных точек (КСОТ)/ Н.Ю. Вараксина, С.Г. Валеев, Ю.А. Нефедьев // Издательство Казанского федерального университета.- 2013.- С. 1- 5464. http://diglib.kpfu.ru/xmlui/handle/123456789/820

АПРОБАЦИЯ РАБОТЫ Результаты, полученные диссертации, В опубликованы В 48 работах, приведенных В публикаций, списке итоговых неоднократно докладывались на научных семинарах И конференциях АОЭ и КФУ, а также автором было сделано более 20 докладов на Международных и Всероссийских конференциях:

Основные результаты диссертации докладывались и были представлены на Международных конференциях:

- European Geosciences Union, EGU General Assembly 2009, Vienna, Austria, 19-24 April 2009.
- Международный симпозиум «Луна, луны и планеты: спутниковые зондирования и сравнительная планетология» 19.08.2009 - 26.08.2009, г. Казань.
- European Geosciences Union, EGU General Assembly 2009, Vienna, Austria, May, 5, 2010.
- European Planetary Science Congress 2011, EPSC-DPS Joint Meeting, La Cite Internationale des Congres Nantes Metropole, 03 – 07 October 2011, Nantes, France.-2011.
- 5. International astronomical congress "Robotic Exploration of the Moon, moons, and planets" ("ASTROKAZAN-2011"), August 22 30, 2011, Kazan, Russia.
- Международная научно-практическая конференция «Комплексное развитие перспективных туристских центров: новые подходы и решения», Казань 16-17 апреля 2010.

7. Международная научно-практическая конференция «Спецпроект: анализ научных достижений», Украина, г. Днепропетровск, 30-31 мая 2011.

Всероссийских конференциях:

- 1. Всероссийская астрометрическая конференция «Пулково 2009» 15-19 июня 2009 г., С.Петербург.
- Всероссийская конференция с элементами научной школы для молодежи «Проведение научных исследований в области обработки, хранения, передачи и защиты информации», 1-5 декабря 2009 г., Россия, Ульяновск.-2009.
- 3. Всероссийская астрономическая конференция «От эпохи Галилея до наших дней», Нижний Архыз (САО), 12-19 сентября 2010, ВАК-2010.
- 4. Всероссийская астрометрическая конференция «Пулково-2012» 1-5 октября 2012 года, С.Петербург.

Полученные во время выполнения работы научные гранты, стипендии и награды:

- 1. Премия первой степени Академии наук РТ (2011 год)
- 2. Именная Стипендия Президента Российской федерации (2011)
- 3. Премия «50 лучших инновационных идей Республики Татарстан» (2011)
- 4. Стипендия мэра города Казани (2010)
- 5. Первое место за лучшую печатную работу Казанского федерального университета в области естественных наук (2010)
- 6. Грант РФФИ 13-02-00792_a (исполнитель)
- 7. Грант РФФИ 08-02-01214_а (исполнитель)
- 8. Грант РФФИ 11-02-91160 ГФЕН_а (исполнитель)
- 9. Грант РФФИ 11-02-92113 ЯФ а (исполнитель)

ЛИЧНЫЙ ВКЛАД АВТОРА В СОВМЕСТЫХ РАБОТАХ

Основные результаты, представленные в диссертации, получены автором самостоятельно. По теме диссертации опубликовано 48 работ. Из них две монографии, 16 статей опубликованы в рецензируемых научных журналах рекомендованных Высшей аттестационной комиссией. Одна публикация написана без соавторов, 47 работ написаны совместно с другими авторами. Все опубликованные статьи выполнены при непосредственном участии автора: постановка задачи, выбор метода исследования, получение и интерпретации результатов, написание самой статьи. Представлено более 20 докладов на Всероссийских и Международных конференциях.

СТРУКТУРА И ОБЪЕМ ДИССЕРТАЦИИ

Диссертация состоит из введения, четырех глав, заключения, списка литературы и приложения. Основной текст диссертации содержит 127 страниц, включая 6 рисунков и 8 таблиц. Приложение состоит из 78 страниц. Список литературы включает 157 наименований на 17 страницах.

Глава 1. Анализ динамической и геометрической фигуры Луны

1.1 Задачи лунной астрометрии

В последнее время многие космические агентства и державы объявили о своих планах по освоению Луны на ближайшие годы. Основная цель – подготовка и создание долговременных научно-технических и экспериментально-промышленных баз на видимой стороне Луны и в районе лунных полюсов для проведения научных экспериментов и освоения лунных недр.

Особо необходимо отметить такие проекты как ЛЛЛ (лазерная локация Луны), Selene, ILOM (JAXA, Япония), LRO (NASA, USA), Chang'e (Китай), Chandrayaan (Индия), Луна - Глоб (РКА, Россия) направлена не только на непосредственные планы освоения Луны, но и на изучение параметров гравитационного поля Луны, ее внутреннего строения, определения точного лунного положения в фундаментальной системе координат, геометрической фигуре Луны. Таким образом, важнейшими задачами и динамической современной является построение селенодезии селеноцентрических опорных сетей, создание динамических лунных топоцентрических и гравиметрических моделей, установление взаимного положения центра фигуры и центра масс Луны, задание систем отсчета селенографических координат для навигационного ориентирования и определения поверхностей отсчета для картографирования лунной поверхности. Относительно необходимо последней задачи отметить, что все современные топографические модели, построенные по космическим наблюдениям, в целом имеют неопределенные поверхности отсчета координат, и, таким образом, и не точные координаты представленных на них объектов. Также без опорного каталога лунных объектов, охватывающего наилучшим образом исследуемую область поверхности, невыполнима и задача сгущения

и расширения космических навигационных сетей. Это подтверждается неудачным опытом привязки топографических данных миссии Kaguya. Как было сообщено японским коллегой Haruyama Junichi на лунно-планетном семинаре, проходившем в Шанхайской астрономической обсерватории 18 июня 2011 года, в данном случае проблема заключалась в следующем: спутник привязывался к станциям ALSEP, и сканирование поверхности проводилось по диску Луны от этих опорных точек с высокой точностью и с небольшим шагом измерений по лунной поверхности. Но в процессе анализа топоцентрических данных выяснилось, что при удалении от опорных станций вся привязываемая топоцентрическая опорная сеть начинала давать значительные отклонения от реальных значений. Очевидно, что, несмотря на высокую точность спутникового сканирования, сама поверхность отсчета и координатная система спутниковых данных не имела точной привязки к динамической системе координат. Таким образом, в настоящее время космические методы изучения рельефа лунной поверхности не могут полностью заменить наземные наблюдения, хотя последние и далеки от совершенства. В будущем решение данной задачи с высокой точностью будет возможно только в том случае, если на поверхности Луны будут выполнены программы, аналогичные проводимым программам координатновременного обеспечения (КВО) на земной поверхности. В настоящее же время оптимальное развитие лунных исследований необходимо проводить при разумном сочетании космических и наземных методов наблюдений.

1.2 Решение современных вопросов лунной селеноографии на основе космических миссий

Первоначальные исследования поверхности Луны космическими аппаратами в 1960-70-х годах дали обширные данные, и в первую очередь в виде фильмов и телевизионных изображений, которые были использованы для создания большого количества лунных карт [111]. Следующий этап

исследований в начале 1990-х годов позволил получить уже цифровые данные, которые включали глобальные мультиспектральные изображения и измерения высот, что позволило создать новое поколение цифровых картографических продуктов, связанных с построением глобальной опорной сети. Также прелагались усилия в направлении сканирования ранее напечатанных карт и распространения их в сети Интернет, а также в области оцифровки с фильмов самих изображений, чтобы было возможным использовать современные методы обработки для получения параметров высокого разрешения и цифровых моделей рельефа (ЦМР).

Среди современных космических миссий наиболее важными для топографии Луны являются Smart-1 (Европа), Selena (Япония), Chang'E-1 (Китай), Chandrayan-1 (Индия) и Lunar Reconnaissance Orbiter (США), полученные данные превышают объем данных, полученных со всех предыдущих лунных и планетарных миссий вместе взятых. Сканированные изображения с камер космического аппарата, В том числе мультиспектральные и стерео данные, гиперспектральные изображения, РСЛ (радио сканирование Луны) изображения и данные с лазерных высотомеров будут собраны в единую базу. Существующие наработки в области международной стандартизации и разработки новых и более эффективных методов обработки данных, а также наличие ресурсов для обработки и их крайне необходимо архивирования, все ЭТО будет ДЛЯ реализации высокоточного картографирования Луны. Соответственно все данные должны быть правильно откалиброваны, предварительно обработаны, приведены в единую систему, как для местных, так и для региональных и глобальных областей. Для получения практической информации необходимы: активизация международного сотрудничества, новые алгоритмы и программное обеспечение для обработки данных, а также методы обработки, хранения данных. Кроме того, требуется повторная обработка данных, полученных в прошлые годы и совместно с новыми наблюдениями привести их в общую систему, правильно их откалибровать,

затем использовать весь наблюдательный массив совместно как единое целое. Кратко рассмотрим основные космические миссии:

Миссия Lunar Orbiter США [87] была направлена на получение изображений высокого разрешения (в том числе стерео) и на выборку безопасных и наиболее важных для научных исследований посадочных площадок для пилотируемых миссий Apollo. Эта задача была успешно завершена в течение первых трех миссий. Лунные орбитальные аппараты IV и V уже выполняли задачу получения систематической и практической глобальной информации с более низким разрешением. Эти миссии позволили получить значительную часть наиболее важных селенографических данных для этой эпохи. Каждый аппарат был оснащен камерой с 80-мм фокусным расстоянием Medium Resolution (MR) и камерой с 610-мм фокусным расстоянием высокого разрешения (HR), которые одновременно снимали участки Луны на 70-мм кинопленку. Геометрические отдельные несовершенства съемки ограничили их картографический потенциал, хотя изображения содержали информацию в виде меток, что позволяет провести более точную реконструкцию этих данных на современной, цифровой технике.

Астронавты миссии Аполлон использовали ручные 70-мм камеры для фотографирования Луны с орбиты, начиная с Аполлона-8 (1968) и на лунной поверхности, начиная с Apollo 11 (1969). Более точные данные были получены за время трех последних лунных миссий 15 , 16 и 17. Сбор фотографического материала осуществлялся специальной орбитальной системой, состоящей из метрической камеры, панорамных камер, звездной камеры и лазерного высотомера [113]. Изображения лунной поверхности, полученные при перекрытии снимков с этих камер, были ограничены освещенной частью приэкваториальной зоны. Покрытие поверхности было незначительно увеличено специальным перемещением космического корабля для получения наклонных снимков по обе стороны от фото дорожки, давая общую площадь покрытия порядка 20 до 25% от поверхности Луны.

Аппарат миссии Ranger был снабжен множеством видеокамер способных осуществить передачу телевизионного изображения на Землю. Поле зрения этих камер составляла от 2° до 24° по горизонтали. Миссии Рейнджерс 7, 8 и 9 также были достаточно успешными, и дали изображения ограниченных лунных областей с разрешением порядка 25 см [113].

Космический аппарат Mariner 10 был направлен к Венере и Меркурию, пролетел над северным полушарием Луны [96]. Было получено несколько сотен изображений с разрешением от ~ 1 до 20 км/пиксель и это была первая возможность охарактеризовать спектральные свойства северной полусферы Луны [130].

Шимерман с коллегами [130] создал Лунный картографический атлас, который включал в себя карты, построенные на основе изображений полученных космическими миссиями США, перечисленными выше, также была дана информация о каждой карте, входящей в данный комплект.

Миссия Galileo положила начало второму этапу исследования Луны. Космический аппарат Galileo в 1990-1992 гг., прошел по маршруту Земля-Луна и получил многочисленные изображения. Были получены изображения Земли с видом на обратную сторону Луны, северную полярную область, и восточный лимб с разрешением до 1 км [82]. На Galileo был установлен прибор Imager (SSI), что было первой планетарной камерой с ПЗС матрицей в качестве детектора. В результате значительно улучшилась стабильность геометрической и радиометрической калибровки изображений. Таким образом, эти изображения могут быть использованы в лунной геодезии, мультиспектральных исследованиях, включая окончательную идентификацию бассейна Aitkin, расположенного на Южном полюсе [81]. В целом, около 75% от Луны было отображено на длинах волн 0,4-1,0 мм.

В начале 1994 года Clementine стала первым космическим кораблем, который вышел на окололунную орбиту и в течение двух десятилетий исследовал Луну. Миссия была совместным проектом Министерства обороны США и NASA, предназначенная в первую очередь для проверки

специальных датчиков и других технологий для стратегической обороны. Clementine была оборудована звездной камерой, высотомером LIDAR, и ПЗС-камерами четырьмя малого формата для наблюдения И картографирования Луны [129]. С использованием UVVIS и NIR камер удалось получить практически глобальный охват лунной поверхности. Был получен большой набор измеренных высот И С использованием спектрофотометров UVVIS и инфракрасных камер NIR мультиспектральных изображений [90].

Миссия Lunar Prospector представляла собой проект NASA (1998-1999 гг.) вывод спутника на орбиту Луны. На борту космического аппарата были установлены спектрометры гамма-излучения, нейтронов и альфа-частиц с целью картирования элементного состава поверхности Луны [86]. Миссия Lunar Prospector была нацелена на качество научных данных, а не на качество изображений или высотных данных, которые обеспечивают высокую точность отображаемого рельефа.

Миссия Smart-1 содержала бортовые камеры AIME CCD - при фотографировании лунной поверхности использовался так называемый метод "маятникового" ряда изображений, который представлял собой как бы действия метлы, собирающей свет с поверхности луны и двигающейся перпендикулярно направлению движения космического аппарата, ЧТО позволяло собрать гораздо большее количество света. Камера была оснащена меняющимися в процессе перемещения цветными фильтрами, цветное изображение получалось путем объединения частично перекрывающихся При обработке данных изображения высокого кадров [88], [109]. разрешения определенных лунных областей и часто полученных в стерео режиме, позволили построить цветные изображения поверхности Луны. Если бы измерения с этих фотографий были бы включены при построении каталога ULCN в 2005 году он, скорее всего, значительно улучшил бы свою плановую точность и позволил намного улучшить и топографическую

модель Луны, в частности, по той причине, что можно было использовать высотные данные.

Миссия Selene (Kaguya) представляла собой японский проект 2007 года [107]. Космический аппарат имел на борту три основных системы для глобального сбора важной селенографической информации. К этим системам относились: местная камера (TC), мультигруппа для получения, лазерный высотомер. Использование линейного сканера в этой миссии и других описанных выше систем создают проблемы при обработке результатов. Если эти проблемы будут решены, то появится возможность обеспечить управление изображениями TC камеры и построить глобальные стерео DTM модели (digital terrain model - цифровая модель поверхности) с вертикальной точностью 20 м при использовании лазерного альтиметра данных. В отличие от других задач, команда миссии Selene поставила цель создания глобальной DTM модели [107] и в основном ее выполнила.

Космический аппарат Chang'E-1 был запущен в Китае в конце 2007 [153] и выполнил серию ССО измерений с использованием стереокамеры. Космический аппарат также имел лазерный высотомер, который давал в полосе 200 м вертикальное разрешение 5м. Еще одной установленной системой являлся интерферометр, который давал на траектории 25,6 км в полосе 200 м разрешение по длине волны 0,48 ~ 0.96 мкм. Так же, как миссия Selene, Chang'E-1 имела возможность обрабатывать данные, полученные на системе камер и высотомера непосредственно на борту спутника с целью получения глобального DTM. К сожалению, разрешение камер относительно низкое, поэтому стерео анализ данных не был достаточно эффективным. В итоге можно сделать вывод, что полученная цифровая информация, тем не менее, может быть использована, если применять для редукции сторонние наборы данных (например, хороший селеноцентрический каталог), так как из-за ширины охвата изображений со спутника (60 км) они должны обеспечиваться реальными значениями горизонтальных геометрических опорных точек глобальной сети.

Индийская миссия Chandrayaan-1 продолжалась с 2008 по 2009 гг. [111]. На борту космического аппарата были установлены: местная камера для картографирования (ТМС), система лазерной локации Луны (LLRI), американский сканер для анализа минералогии Mapper (M3), американский радар (Mini-RF) "Предвестник" МИНИ радио c синтезированной апертурой (PCA). Разрешение камеры Chandrayaan-1 обеспечивает более высокое разрешение глобального охвата в стерео режиме с совместным использованием данной камеры по сравнению со всеми другими описанными здесь космическими миссиями. Полученные космические используются уточнения снимки для сопровождающих высотомерные измерения глобальные данные (или, можно сказать, что совместный набор данных производился путем согласования и объединения данных от высотомеров нескольких космических миссий).

Миссия Lunar Reconnaissance Orbiter (LRO) США стартовала в 2008 году [89]. Космический аппарат имел на своем борту три важных инструмента для исследования селенографических параметров, которые в глобальном масштабе должны были получить селенодезическую информацию. Эти системы: камеры LROC, лазерный высотомер LOLA, и радиолокационный радар Mini-RF SAR. Система LOLA может обеспечить очень высокую плотность высотных данных, которые, особенно в сочетании с данными от других миссий, способна дать самые лучшие результаты в области лунной топографии. Точность такой топографической информации зависит от того, насколько точно определяются координаты орбиты космического корабля. В миссия LRO особое внимание было обращено на точности определения параметров орбиты спутника. С повышение использованием камеры панорамной съемки были получены изображения высокого разрешения покрытия определенных областей Луны. Тем не менее, эти снимки должны быть связаны с глобальными опорными каталогами на основе использования соответствующих фотограмметрических процедур. Данные, полученные с использованием камер цветного изображения,

аналогичны изображениям, построенным Lunar Orbiter, Clementine, и Chang'E-1, и на их основе можно улучшить параметры глобальной сети в плановых координатах, но наиболее ценными они оказались в случае совместной обработки данных лунной альтиметрии. Необходимо отметить, что все снимки связывались между собой с целью решения нескольких задач: а) для создания еще одного глобального набора данных изображений с «подсветкой» и содержащих цветовую информацию в дополнение к данным других космических миссий; b) для анализа информации, которая была получена от повторов сканирования полюс лунной поверхности. Это чрезвычайно полезно с целью поиска на изображениях постоянной тени или освещенных участков; c) для связи с пространственными данными наблюдательной информации, полученной LRO.

Японская миссия Kaguya. Спутник Kaguya на своем борту имел лазерный высотомер (LALT), который измерял расстояния между спутником и лунной поверхности с точностью до 1 м на основе анализа времени задержки отраженного от поверхности Луны лазерного излучения [127]. Целью LALT было создание глобальной топографической модели, которая включала бы полярные регионы, а также изучение вопросов происхождения и эволюции Луны. Необходимо отметить успешное решение таких задач, как получение первых точных глобальных топографических моделей лунных полярных областей, которые не были охвачены сканерами миссии Clementine, и выявление топографических особенностей в затененных областях Луны. Также был уточнен средний лунный радиус, значение которого оказалось равным 1737,15 ± 0,01 км и смещение лунных центра масс относительно центра фигуры 1,94 км [73].

В заключение необходимо отметить, что существует необходимость повторной обработки различных наборов космических данных, так как постоянно происходит улучшение методов обработки и подходов, на основе которых продолжается развитие глобальных селенодезических опорных сетей. Это направление особенно стало важным с появлением опорных сетей,

которые являются селеноцентрическими. Также идет развитие в направлении создания баз данных для глобальных высотных измерений в последующих космических миссиях, что, несомненно, повысит точность управления селеноцентрическими сетями [74], [75].

В связи с этим направлениями деятельности должны стать:

- "сшивание" миссий, проводимых различными космическими агентствами;

- создание рабочих групп для уточнения лунной системы координат, стандартов и констант;

- данные, полученные при осуществлении прошлых и будущих миссий, должны быть объединены с селеноцентрическими динамическими каталогами;

- в каждой из запланированных лунных миссий имеющих низкое разрешение полученных данных необходимо координировать с соответствующей опорной сетью на основе использования геометрической и высотной информации с космических аппаратов, полученной в предыдущих миссиях (такой подход исторически носит название "C-smithing");

- опорный селеноцентрический каталог должен быть привязан к альтиметрическому набору данных, а последний, в свою очередь, должен быть привязан к системе координат LLR.

База данных альтиметрических измерений вначале должна быть высотомерной информации, скорректирована на основе необходим качественный анализ ошибок орбиты. Последнее напрямую связано с селенофизизических данных, полученных качеством С орбиты. Альтиметрические наблюдения должны быть объединены с другими данных, а затем произведен поворот координатной системы в систему отсчета LLR. Таким образом, селеноцентрический каталог может быть привязан к спутниковым высотным c помошью относительного данным геометрического метода взаимосвязи с одновременно полученными с борта космического высотными измерениями аппарата снимками С

поверхности, или через связи между изображениями и распределением данных в DTM модели (Цифровая Модель Местности), полученной на основе высотных данных. Последний метод был впервые опробован в миссии Viking при редукции изображений MOLA DTM при создании MDIM 2,1 [74], [75]. Абсолютные геометрические высототные данные, полученные на основе сканирования с бортов космических аппаратов, в инерциальной системе координат будет служить опорной системой для дальнейших работ в области селенографии.

1.3 Анализ динамической и геометрической фигуры Луны

В данном параграфе было выполнено исследование систем координат селенографических каталогов, космических миссий с точки зрения анализа взаимного положения центра фигуры и центра масс Луны.

В настоящее время все данные по лунной топографии можно разделить на два типа [140]. Данные, полученные на основе лазерного сканирования лунной поверхности с бортов спутников, хорошо описывают лунный рельеф, но не дают значения координат опорных объектов на Луне. Другой тип данных представляет собой точные координаты опорных объектов, полученных на основе наблюдений прямой привязки их к звездам, но не описывают с достаточной точностью лунный рельеф. Причем все эти системы имеют разные системы отсчета и ориентацию осей координат.

Известно, что данные, полученные во всех космических миссиях, относятся к квазидинамической системе координат, в которой центром отсчета координат является центр масс Луны, но оси координат не совпадают с осями инерции Луны. Многие современные каталоги лунных объектов так же имеют квазидинамическую систему координат.

Отметим, что в настоящее время не существует опорной динамической селеноцентрической системы координат, основанной на космических наблюдениях, которая покрывала бы достаточную площадь на лунной

поверхности. Несмотря на точность определения физического рельефа Луны космическими миссиями, поверхность отсчета высот точек этого рельефа представляет собой абсолютно неопределенную фигуру.

В связи с этим во многих статьях, где описываются спутниковые топографические данные, большое внимание уделяется высокой точности полученного физического рельефа и умалчивается вопрос о поверхности отсчета высот.

На данный момент не существует фотограмметрического метода построения лунной спутниковой топографической карты на основе разрозненных спутниковых снимков лунной поверхности в единую систему на абсолютной основе. Следовательно, спутниковые топографические карты не являются полноценными моделями.

Отметим, каталог "Казань-1162" построен в динамической системе координат, так как объекты на лунной поверхности имеют привязку абсолютным методом к звездам.

Существует возможность исследовать достоверность топографических моделей, полученных на основе спутниковых и наземных наблюдений, представляется сделать следующее:

- выполнить прямое сравнение поверхностей лунного макрорельефа, которое задается спутниковой топографической картой и макрорельефов, полученных из других источников;

- провести сравнительный анализ значений положения центра масс относительно центра фигуры Луны для разных источников топографической информации.

Кроме того, предполагаем, ΜЫ что ДЛЯ всех источников гипсометрической информации обработку, данные включенные В равноточные. Это следует из следующего факта. Если в случае каталогов плановых координат имеется высокая точность представленных координат объекта на поверхности Луны, но невысокая точность подробного описания окружающего рельефа. При лазерном сканировании с бортов спутников мы

имеем высокую точность отображения рельефа, но низкую точность привязки этого рельефа к какой-либо селенографической системе координат (точнее неопределенную систему отсчета топографических данных).

Нахождение значения взаимного положения центра фигуры Луны, и ее центра масс требуется как для точного решения лунных навигационных задач, так и для исследований эволюции и строения нашего естественного спутника. Таким образом, на сегодняшний день для сопровождения космических лунных миссий решение такой задачи является актуальным и востребованным.

Положение центра масс Луны можно вывести относительно центра аппроксимирующей Луну сферы, если центр фигуры Луны определять по геометрическим данным (высотам объектов), а центр масс – по внешнему гравитационному полю (движение ИСЛ и др.) [146]. Первые такие результаты по видимой стороне были представлены в [40, 41], а с учетом измерений высот на обеих сторонах – в [136]. Значения положения центра масс относительно центра фигуры по данным [136], полученные разными авторами, приводятся в [60] (табл. 1.3.4). Из последующих исследований следует указать работы [66], [85], где центр масс Луны фиксировался центром координатной системы каталога координат объектов на ее поверхности, полученного из разнородных источников, а гипсометрическая информация использовалась для представления высоты (как функции сферических координат) в виде разложения по сферическим гармоникам. Затем по амплитудам гармоник первого порядка определялось положение центра фигуры относительно центра масс. Последние космические миссии [73], [137] также внесли существенный вклад в области определения взаимного положения центров фигуры и масс Луны. Тем не менее, мы предлагаем решить ЭТУ проблему прямым использованием селеноцентрического каталога координат идентифицируемых объектов, которые расположены однородно по поверхности Луны. В настоящей работе базисной опорной сетью для привязки использовался каталог Казань-1162

[19], центр отсчета координат которого совпадает с лунным центром масс, а оси координат лежат в главных осях инерции Луны. Расширение данного каталога на обратную сторону Луны даст возможность построения Глобальной селеноцентрической опорной сети [20]. Метод построения каталога Казань-1162 изложен в Главе 3.

1.3.1 Описание моделей, методов и программного обеспечения гармонического анализа лунного рельефа

В связи с тем, что исходные данные распределены неравномерно по видимой и обратной стороне Луны, то для определения среднего радиуса определяются средние радиусы обеих сторон и брали их среднее арифметическое [66]:

$$R = R_0 + \frac{1}{2} \left(\Delta R_{oud} + \Delta R_{odp} \right) = 1737,7 \kappa M, \Gamma Д e R_0 = 1738 \kappa M$$
$$\Delta R = \sum_{i=1}^{316} H_i p_i \cos \varphi_i / \sum_{i=1}^{316} p_i \cos \varphi_i$$

Здесь, H_i - высоты точек относительно средней сферы с центром в центре масс, $p_i \cos \varphi_i$ - веса точек ($p_i = 1$ или 0,1). Коэффициенты разложения по сферическим функциям $\overline{C_{nm}}$, $\overline{S_{nm}}$ можно найти, используя метод наименьших квадратов, решив систему 316 условных уравнений вида

$$\sqrt{p_i \cos \varphi_i} \sum_{n=1}^{N} \sum_{m=0}^{n} S_{nm} i = \sqrt{p_i \cos \varphi_i} (H_i - \Delta R), _{\Gamma \square e}$$
$$S_{nm} i = (\overline{C_{nm}} \cos m\lambda_i + \overline{S_{nm}} \sin m\lambda_i) \overline{P}_{nm} (\sin \varphi_i)$$

Здесь $\overline{P}_{nm}(\sin \varphi_i)$ - нормированные присоединенные полиномы Лежандра

$$\overline{P_{nm}}(\sin\varphi) = \sqrt{\frac{\varepsilon_m(2n+1)(n-m)!}{(n+m)!}} P_{nm}(\sin\varphi) \ \varepsilon_0 = 1, \quad \varepsilon_m = 2, \quad m = 1, 2, \dots$$

Так как система сферических функций является ортогональной, то коэффициенты каждого порядка $N = 1 - N_k$ определяются последовательным решением N_k систем уравнений типа

$$\sqrt{p_i \cos\varphi_i} \sum_{m=0}^{N} S_{nm} i = \sqrt{p_i \cos\varphi_i} \left(H_i - \Delta R - \sum_{n=1}^{N-1} \sum_{m=0}^{n} S_{nm} i \right)$$

Коэффициенты первого порядка определяют смещение центра фигуры Луны относительно центра масс (СЦФ):

$$\Delta \xi = \sqrt{3} \overline{C_{11}} = -2.0 \kappa M \qquad (\varphi = 0^{\circ}, \lambda = 0^{\circ})$$

$$\Delta \eta = \sqrt{3} \overline{S_{11}} = -0.1 \kappa M \qquad (\varphi = 0^{\circ}, \lambda = 90^{\circ})$$

$$\Delta \zeta = \sqrt{3} \overline{C_{10}} = -2.0 \kappa M \qquad (\varphi = 90^{\circ})$$

(1.3.1)

где $\Delta \xi$ – СЦФ вдоль координаты, направленной к Земле, $\Delta \eta$ – СЦФ вдоль координаты, направленной перпендикулярно к ξ и лежащей в плоскости лунного экватора, $\Delta \zeta$ – СЦФ вдоль координаты, совпадающей с осью вращения Луны; $\overline{C}_{11}, \overline{S}_{11}, \overline{C}_{10}$ - амплитуды гармоник первого порядка в разложении функции рельефа. В соответствии с этим ниже рассматриваются: построение математических моделей с целью их гармонического анализа; методы анализа моделей и вычисление для них искомых параметров; обработка данных на основе информационно технологических подходов.

Этап определения (оценивания) параметров математических моделей является одним из наиболее важных вычислительных процедур при обработке наблюдений [13]. Проблема корректности математической обработки при совмещении требований к точности и надежности результатов и возможностей существует при описании процесса или явления наряду с проблемой выбора формальной (аппроксимирующей) или геометрической (причинно-следственной) модели.

К сожалению, традиционный подход оценивания параметров, предусматривающий жестко фиксированную модель и применение метода наименьших квадратов (МНК) [43], не соответствует возрастающим
требованиям практики и возможностям методологии, основанной на статистическом, компьютерном моделировании. Отдельные попытки выйти из рамок стандартного МНК [32] нацелены на решение частных проблем и не предусматривают системного подхода к задаче. Типичными ограничениями при обработке наземных наблюдений и космических данных могут быть наличие незначимых, мало информационных и дублирующих (зависимых) друг от друга) членов разложения, нарушение предположений МНК нормальной схемы Гаусса — Маркова [13]. В связи с этим изучение рода шумовых эффектов, различного загромождающих описание И приводящих к потере точности определения значимых параметров И прогноза, нарушение основных свойств оценок МНК (состоятельности, несмещенности, эффективности). Положение, осложняется тем, что при оценивании не проверяется степень адекватности модели наблюдениям; тем более что применяемый набор мер качества очень узок, а сами меры Исследователи страдают заметными недостатками. чаше всего не подозревают о действительном положении дел и не прибегают к адаптивным так соблюдение предположений МНК вычислительным схемам, не проверяется

Предлагается методология регрессионного моделирования в качестве альтернативы традиционному подходу [13], предусматривающая в задачах оценивания регрессионный анализ, проверку предположений, адаптацию в нарушений случае ИХ И предполагающая наличие специального программного обеспечения системы обработки информации, _ автоматизирующей анализа. Регрессионное процесс вычисления И моделирование представляет собой системный подход, при котором корректность применения любого элемента системы (выборка, модель, метод оценивания параметров, метод оценивания структур, мера качества, набор быть предположений) может подвергнута сомнению И проверке С соответствующей адаптацией при нарушении заданных условий.

Для построения моделей использовались следующие источники топографической информации: "Clementine" [155], "Kaguya" [73], Казань-1162, Киев [30], Гаиш (Чуйкова) [66], "Bills, Ferrari" [85], "ULCN" (The Unified Lunar Control Network 2005) [76].

1.3.1.1 Построение модели лунного рельефа

С целью построения математической модели рельефа лунной поверхности можно использовать метод разложения в ряд по сферическим гармоникам [60] функции высоты $h = h(\varphi, \lambda)$ в виде модели регрессии [13]:

$$h(\varphi,\lambda) = \sum_{n=0}^{N} \sum_{m=0}^{n} \left(\overline{C_{nm}} \cos m\lambda + \overline{S_{nm}} \sin m\lambda \right) \cdot \overline{P_{nm}} (\cos \varphi) + \varepsilon$$
(1.3.2)

где φ, λ - широта и долгота для известных координат лунных объектов; $\overline{C_{nm}}$, $\overline{S_{nm}}$ - нормированные амплитуды гармоник; $\overline{P_{nm}}$ - нормированные присоединённые функции Лежандра; ε - случайная ошибка регрессии.

Ряд (1.3.2) является медленно сходящимся. Например, для описания деталей рельефа, меняющихся на протяжении 1°, необходим примерно порядок разложения n=180, что приводит к необходимости оценивания $(180+1)^2$ коэффициентов (амплитуд) разложения.

Практически размерность модели (1.3.2), порядок *n* следует задавать исходя из количества объектов. Их число должно в 5÷15 раз превышать количество оцениваемых амплитуд [13].

1.3.1.2 Алгоритм оценивания амплитуд гармоник

Для разных источников гипсометрической информации редукция переопределенной системы (1.3.2) осуществлялась с использованием регрессионного моделирования [23], которое кроме штатных этапов по

построению модели (1.3.2) и вычисления амплитуд C_{nm} , S_{nm}) также предусматривает [23]:

использование ряда статистик качества, в том числе внешних мер;
 диагностику соблюдения основных условий метода наименьших квадратов (МНК);

- адаптацию при их нарушении. Для метода наименьших квадратов используются алгоритмические программные модули Гаусса-Жордана и Хаусхолдера.

При редукции модели (1.3.2.) основными нарушениями условий применения МНК является наличие [23]:

- шумовых избыточных гармоник, которые приводят к снижению точности вывода определенного количества высот и изогипс;

амплитуд гармоник, которые коррелируют друг С другом при использовании (1.3.2.) при описании рельефа на участке сферы или если мы имеем неравномерное распределение объектов; В таком случае математическую модель, которая включает параметры оценки амплитуд, следует считать некорректной.

Используя пошаговую регрессию (известную процедуру регрессионного анализа [23]), можно выполнить согласование с этими двумя упомянутыми выше нарушениями. Это будет достаточно эффективно для оценивания параметров модели (1.3.2), если:

a) Имеется распределение объектов по всей поверхности сферы, даже если это распределение является и неоднородным;

б) Для того, чтобы время расчетов было оптимальным, порядок разложения, который определяется количеством используемых в анализе точек, должен быть меньше 15. Если распределение объектов по сфере является достаточно однородным, то можно исключить стохастически малозначимые гармоники и произвести все расчеты заново.

Прямое использование модели (1.3.2) для отдельных участков сферы (полусфера и др.) затруднительно из-за взаимозависимости

(мультиколлинеарности - эффекта МК) коэффициентов разложения. В предыдущих работах для описания рельефа на обратной стороне Луны использовалось «зеркальное» отображение объектов видимой стороны. Такой подход, конечно, не может применяться для описания рельефа отдельных сегментов, площадь которых меньше полусферы [25]. В работе [21] предложен способ оценивания амплитуд модели (1.3.2) путем предварительного расширения сегмента до полной сферы, именно это позволяет полностью устранить эффект МК. Затем с использованием пошаговой регрессии производится удаление шумовых гармоник.

1.3.1.3 Информационные и программные подходы к обработке селенографических данных

С целью анализа модели (1.3.2) по сферическим гармоникам, непосредственного создания цифровой модели и определения значений положения центра фигуры относительно центра масс использовалась АСНИ автоматизированная система научных исследований [13], [21], первоначально разработанная в УлГТУ, и впоследствии адаптированная при совместных исследованиях в области селенографического моделирования для задачи, решаемой в настоящей работе и внедренная в Астрономической обсерватории им.В.П. Энгельгардта.

АСНИ можно использовать для анализа распределения различных параметров моделей, таких как полей: гравитационного, магнитного, и т.д., рельефов, на полной сфере и отдельных ее участках на основе рядов измерений в точках с известными координатами. С использованием данного программного комплекса возможно построение моделей аналогичных (1.3.2), а также вычисление сечений и изогипс для лунного макрорельефа, которые могут быть выполнены в трехмерном представлении. Имеется возможность для оценки достоверности и качества соблюдения вычислительных процедур метода наименьших квадратов и выполнения условий (1.3.2). Если данные

условия нарушаются включается специальный алгоритм адаптации полученных результатов.

В настоящее время известен ряд специализированных пакетов программных продуктов (ППП) [22, 35], созданных отечественными и зарубежными коллективами и ориентированных на обработку данных методами математической статистики. Данные этих ППП не приспособлены для решения целевых задач астрономии (планетодезии и небесной механики) как в программном смысле (по объему машинной памяти и количеству неиспользованных модулей), так и в математическом (скудное "меню" по модулям, обеспечивающим разнообразие восстанавливающих функций, методов поиска и т.д.). Другими словами, как бы хорошо ни был организован ППП, какие бы сервисные удобства ни представлял он пользователю, ценность его будет невелика, если он не решает широкого круга задач в данной предметной области из-за ограниченности специализированной библиотеки программных модулей.

Программные модули, реализованные в АСНИ, обеспечивают решение И избыточных (переопределенных) систем линейных нормальных алгебраических уравнений [22, 35]. Решение последних есть решение МНК. Результатами являются оценки неизвестных параметров, их стандартные ошибки, элементы корреляционной матрицы, внутренние меры качества, с помощью которых анализируется модель В целом, внешние меры, выявляющие степень адекватности модели при использовании ее для прогноза. Чаще всего программа содержит ту или иную процедуру поиска оптимальной структуры модели. Вводятся модули для осуществления подхода регрессионного моделирования (РМ), которые обеспечивают проверку основных предположений регрессионного анализа (РА) (модули построения различных графиков, проверка нормальности распределения, вычисления авторегрессии и т.д.). Используя набор модулей, реализующих альтернативные МНК методы оценивания (робастные методы, гребневое оценивание), можно осуществить адаптацию к нарушению условий.

В основном режиме моделирования АСНИ обладает следующими возможностями [22, 35]:

- построение моделей в виде разложения по сферическим функциям *n* - го порядка и *i* - ой степени;

- реализация методов структурной идентификации;

- автоматизация процесса обработки при различных порядках разложения;

построение и анализ графиков "остаток-отклик", "остаток-регрессор"
 с целью проверки выполнения предположений регрессионного анализа;

- проверка выполнения предположения о нормальном распределении нормированных остатков;

- определение автокорреляции остатков по критерию Дарбина-Уотсона;

- защита от непредусмотренных попыток ее применения;

 поддержка дружественного предметно - ориентированного интерфейса с пользователем.

Существует аналог пакета АСНИ - пакет SURFER предназначенный для описания потенциальных полей (аномалий силы тяжести, магнитного поля, характеристик почвы и т.д.) на участках. Благодаря использованию разложений по сферическим функциям с расширением до полной сферы и другим описанным выше свойствам применение АСНИ для участков земной поверхности позволяет обеспечить по сравнению с SURFER повышение точности описания и прогнозирования от 40% и выше.

1.3.2 Результаты определения вектора смещения центра фигуры Луны относительно ее центра масс

Модели рельефа получены по данным миссии Clementine [137] и других [73], [76] и каталогов [19], [30], представленных как в виде координат объектов видимой стороны Луны, так и в виде списка координат объектов, расположенных по всей сфере. В этом случае координаты объектов, которые

не вошли в область охвата каталогов [19], [30] были взяты из списков [73], [76], [137].

Ниже в таблице приведены значения нормированных коэффициентов разложения первого порядка для пяти источников гипсометрической информации и их стандартные среднеквадратичные ошибки (СКО).

В первом столбце даются значения степени *n* и порядка *m* разложения (1.3.2.). В столбцах 2, 3 приведены оценки амплитуд C_{nm} , S_{nm} для проекта Clementine (первой версии данных) [137] для порядка разложения N=40 и их соответствующие СКО; в столбцах 4, 5 - для казанского каталога последней версии [19] при N=5; в столбцах 6, 7 – для расширенного варианта киевского каталога [30] при N=5; в столбцах 8, 9 и 10, 11 – для казанского и киевского каталога при N=5 с добавлением недостающей информации по остальной части сферы из списка Clementine. В строке «0,0» размещены поправки к принятому среднему радиусу Луны (\overline{C}_{00}).

Представляет интерес сравнить вычисленные амплитуды гармоник как с ранними результатами [66], [85] так и с последними, полученными с уточнением первой версии данных проекта Clementine [76] в виде ULCN и по данным проекта Kaguya [73].

Таблица 1.3.1 Нормированные коэффициенты первого порядка разложения функции рельефа Луны для пяти источников гипсометрической информации, км [25]

<i>n</i> , <i>m</i>	Clementine			Казань			Киев					
	\overline{C}	\overline{S}	σ_{c}	$\sigma_{\scriptscriptstyle S}$	\overline{C}	\overline{S}	σ_{c}	$\sigma_{\scriptscriptstyle S}$	\overline{C}	\overline{S}	σ_{c}	$\sigma_{\scriptscriptstyle S}$
1	2		3		4		5		6		,	7
0,0	-0,83				-1,77				-0,68	3		
1,0	-0,37		±0,01		0,23		±0,03		0,10		±0,02	
1,1	-1,04	-0,43	±0,01	±0,01	-0,16	0,48	±0,04	±0,03	0,08	0,27	$\pm 0,02$	±0,01

<i>n</i> , <i>m</i>	Казань -	+ Clementine	Киев + Clementine			
	\overline{C} \overline{S}	$\sigma_c \sigma_s$	\overline{C} \overline{S}	$\sigma_c \sigma_s$		
1	8	9	10	11		
0,0	-0,87		-0,59			
1,0	0,09	±0,01	0,20	±0,01		
1,1	-0,86 -0,40	±0,02 ±0,01	-0,54 -0,42	±0,01 ±0,01		

Структура таблицы 1.3.2 аналогична структуре таблицы 1.3.1. Значения амплитуд гармоник были взяты в авторских источниках. В строке «0,0» приведены скорректированные радиусы; в остальном величины такого же назначения, как и в таблице 1.3.1.

Таблица 1.3.2 Коэффициенты разложения для четырех источников, км [25]

n, m	ГАИШ		Bills, Fe	errari	ULCN		KAGUYA	
	\overline{C}	\overline{S}	\overline{C}	\overline{S}	\overline{C}	\overline{S}	\overline{C}	\overline{S}
1	2		3		4		5	
0,0	1737,7		1737,53		1737,03		1737,16	
1,0	-1,18		-0,37		0,15		0,14	
1,1	-1,17	-0,04	-1,05	-0,26	-0,99	-0,42	-1,02	-0,45

Величины амплитуд гармоник, размещенных в столбце 2 [66] выведены для значения N=8: в столбце 3 [85] для значения N=12; в столбце 4 [76] для N=359; в столбце 5 [73] – при N=180. Значения средних квадратических ошибок в таблице не даются.

По соотношениям (1.3.1) и данным, приведенным в таблицах 1.3.1, 1.3.2, были вычислены координаты центра фигуры относительно центра масс (таблицы 1.3.3, 1.3.4).

Для получения СКО смещений ошибки амплитуд в таблице 1 умножаются на $\sqrt{3}$.

Таблица 1.3.3 Координаты центра фигуры Луны относительно центра масс для пяти источников гипсометрической информации, км

	Clementine	Казань	Киев	Казань +	Киев +
				Clementine	Clementine
Δξ	-1,80	-0,28	0,14	-1,49	-0,94
$\Delta \eta$	-0,74	0,83	0,47	-0,69	-0,73
Δζ	-0,64	0,40	0,17	0,16	0,35

Таблица 1.3.4 Координаты центра фигуры Луны относительно ее центра масс по четырем источникам, км

	ГАИШ	Bills, Ferrari	ULCN 2005	KAGUYA
$\Delta \xi$	-2,03	-1,82	-1,71	-1,77
$\Delta \eta$	0,07	-0,45	-0,73	-0,78
Δζ	-2,04	-0,64	0,26	0,24

Судя по данным таблиц 1.3.3, 1.3.4, каталог Казань-1162 [19], построенный для видимой стороны Луны и имеющий координатные оси лежащие в системе центра масс и главных осей инерции Луны, при совместном использовании объектов вне зоны покрытия данного каталога на основе данных миссии Clementine показывает хорошее согласие с результатами космических миссий Clementine и Kaguya.

При этом следует отметить, что согласно нашим результатам, приведение первых измерений миссии Clementine к системе каталога ULCN, по-видимому, имела отношение только к видимой стороне Луны. Это следует из того факта, что амплитуды и смещения для каталога ULCN 2005 (таблицы 1.3.2, 1.3.4) близки к значениям совместного использования (Казань + Clementine; таблицы 1.3.1, 1.3.3), а не полученным напосредственно из данных миссии Clementine.

На основе анализа полученных в настоящей главе результатов можно сделать заключение, что каталог Казань-1162 имеет систему отсчета координат, которая лежит в центре масс Луны, а учитывая метод его построения, у данного каталога оси координат априори совпадают с осями инерции Луны. Таким образом, каталог Казань-1162 может с успехом использоваться для выполнения задач, решаемых в следующих разделах настоящей работы.

ГЛАВА 2. Опорная селеноцентрическая сеть в краевой зоне Луны

Либрационная зона Луны до сих пор представляет собой достаточно неисследованный в селеноцентрическом плане район. К настоящему времени накоплены большие ряды измерений профилей краевой зоны Луны гелиометрическими и фотографическими методами и по данным покрытий звезд Луной. «Но они не могли быть использованы в селенодезических исследованиях, так как соответствующие высоты были отсчитаны от нулевых [31]. совершенно произвольных поверхностей» Наиболее подробными являются карты Уоттса [149]. Однако система координат данных этих карт не совпадает с фундаментальной звездной системой. В отличие от всех предыдущих карт, созданных в мировой практике, только в картах краевой зоны «Казань» [55] поверхность отсчета неровностей лунного отнесена к фундаментальной небесной системе края координат, эфемеридному центру масс Луны и ее главным осям инерции.

Нами проведены работы по построению каталога селеноцентрических опорных кратеров либрационной зоны Луны на основе использования карт объектов лунной поверхности и динамической модели краевой зоны Луны «Казань» [24, 147].

2.1 Селенографические модели краевой зоны Луны

Существенной проблемой при создании моделей краевой зоны Луны является нахождение положения центра масс Луны относительно центра фигуры лунного диска. Кроме современных методов, описанных в предыдущей главе, в прошлом положение центра масс Луны определеляли путем сравнения меридианных наблюдений или наблюдений покрытий с гравитационной теорией движения Луны. Еще Ганзен [51] определил, что центр масс Луны не совпадает с центром ее видимой фигуры. Луна является неправильным и неоднородным телом, это и было причиной данного

явления. Особенно местные возвышения на южном крае лунного диска сильно влияют на смещение центра фигуры Луны к югу от центра масс. Вследствие оптической либрации величина этого смещения изменяется, в результате меняется видимая величина полярного радиуса Луны. При своих исследованиях А.А. Нефедьев для представления системы отсчета данных использовал первую модель макрофигуры Луны А.А. Яковкина. Согласно этой модели считается [45], что контур Луны состоит из двух половин: северная часть является окружностью постоянного радиуса R_0 , южная половина является частью полуэллипса и центр масс Луны совпадает с центром ее северного полушария. По этой гипотезе были вычислены координаты ξ и η центра фигуры Луны относительно центра масс.

Построенные А.А. Нефедьевым карты удовлетворяют требованиям качества: радиус вероятнейшей окружности, исправленный за неровности, не зависит от оптической либрации по широте и поправки широты Луны, вычисленные из покрытий и меридианных наблюдений, отредуцированные за неровности края по полученным картам заметно уменьшились по абсолютной величине, имеют случайный характер. Для всех других карт краевой зоны Луны эти условия не выполняются вследствие того, что высоты неровностей не отнесены в них к общей уровенной поверхности, поэтому осталась иногда даже небольшая, как в картах Уоттса, зависимость от оптической либрации. Недостатком карт А.А. Нефедьева является малое количество наблюденных точек, лля которых находились высоты было неровностей, ЭТОГО невозможно избежать при визуальных наблюдениях. Большой заслугой было определение общей поверхности отсчета неровностей лунного края для всех наблюдений, сделанных при либрациях. Поэтому при использовании фотографических разных наблюдений Луны, с помощью которых можно делать измерения высот для множества точек края, все измерения целесообразно привести к поверхности отсчета неровностей лунного края - селеноиду, определенному в работе [45].

В 1934 году А.А. Яковкин открыл зависимость радиуса Луны от было либрации по широте, что позднее подтверждено многими исследователями Луны [50], [122], которые установили, что измеренные высоты неровностей лунного края, соответствующие разным либрациям, относятся к различным поверхностям отсчета неровностей лунного края, по форме скорее эллиптическим, нежели сферическим И смещенным относительно друг друга.

Рисунок 2.1.1 - Средний контур лунного диска [45].

При создании карт краевой зоны луны задача создания общей поверхности отсчета неровностей лунного края, которая не зависит от оптических либраций, становится основной. Такая задача была успешно решена в работе [45]. Проведя анализ результатов наблюдений касательных покрытий Моррисон установил [121, 122, 123], входя в карты Уоттса необходимо в аргумент карт - позиционный угол – внести поправку $-0^{0}25$ (вычисленные позиционные углы увеличить на $0^{0}25$).

К 1984 году японским астрономом Сома [51] были выполнены анализы лунных покрытий за 1955 – 1980 годы с использованием новой эфемериды ELP 2000. Целью работы было исследование теории движения Луны ELP 2000-82, построенной на основе лазерных наблюдений, определение точных значений постоянных в этой теории, оценивание точного значения

приливного члена в средней долготе Луны и значений движения перигея и узла лунной орбиты.

Сома определил, что центр в картах Уоттса расположен впереди центра масс в направлении орбитального движения. Это согласуется с результатами, полученными лазерной альтиметрией, проведенной миссиями «Аполлон» и орбитальной и наземной фотограмметрией. Таким образом, Сома еще раз подтвердил тот факт, что на основе редукции наблюдений покрытий звезд Луной можно получать важные и достоверные результаты.

Существование селенодезических каталогов и карт краевой зоны Луны, дающих сведения о рельефе лунной поверхности, продиктовано жизненной необходимостью. В связи с этим, создание селенодезических опорных сетей как видимой, так и обратной сторон Луны, построение точных моделей рельефа Луны актуально, пока исследуются движения центра масс Луны в пространстве. Учитывая это, в АОЭ было осуществлено построение карт краевой зоны Луны «Казань» принципиально новым способом, основа которого заключается в создании крупномасштабных снимков Луны со звездами. Поверхность отсчета неровностей лунного края отнесена к фундаментальной небесной системе координат, то есть к главным осям инерции Луны и ее эфемеридному центру масс [50, 55]. Это и является существенным отличием от предыдущих карт.

На каждом снимке с помощью прибора Аскорекорд было измерено от 290 до 360 точек края диска Луны (i = 1, 2, 3, ..., n). Всего для построения карт краевой зоны использовалось более 40000 измерений. Редукция измерений происходила следующим образом [55]:

Пусть *x*, *y* - измеренные координаты фотографических изображений точек лимба Луны. Тогда их стандартные координаты будут:

$$\begin{pmatrix} X_i \\ Y_i \end{pmatrix} = \begin{pmatrix} a \ b \ c \\ d \ c \ f \end{pmatrix} \begin{pmatrix} x_i \\ y_i \\ 1 \end{pmatrix}.$$
 (2.1.1)

Здесь a,b,c,d,e,f - постоянные пластинки. По стандартным координатам X,Y можно вычислить полярные координаты θ,ρ измеренных точек лимба относительно эфемеридных положений центра масс Луны:

$$\tan \theta_i = \Delta X_i / \Delta Y_i, \rho = \sqrt{\Delta X_i^2 + \Delta Y_i^2}, \qquad (2.1.2)$$

где $\Delta X_i = X_i - X_C$, $\Delta Y_i = Y_i - Y_C$, $X_C = (\alpha_C - \alpha_0)$, $Y_C = (\delta_C - \delta_0)$, α_0, δ_0 координаты оптического центра снимков, α_C', δ_C' - топоцентрические эфемеридные координаты Луны по теории ее движения DE200/LE200.

Радиус – вектор ρ можно представить в виде суммы $\rho_i = R_C^{'} + H_i^{'}$, где $R_C^{'}$ - топоцентрический эфемеридный радиус Луны, и $H_i^{'}$ - превышение точек краевой зоны над сферой с радиусом $R_C^{'}$. Значения $H_i^{'}$ можно привести к среднему расстоянию от Земли до Луны с использованием следующего выражения: $H_i = (932.58^{''}/R_C^{'}) \times H_i^{'}$.

Для каждой измеренной точки на снимках Луны были вычислены гайновские координаты Р, D с учетом влияния физической либрации Луны по таблицам Мигус [117]. По координатам Р, D более 40000 точек были построены карты краевой зоны Луны в графическом виде.

Что касается современных карт поверхности Луны, то они уже охватывают не только либрационную зону, но и всю лунную сферу. Одной из первых таких карт стала «Полная карта Луны», которая покрывает 95% поверхности Луны. Она была разработана в ГАИШ МГУ и издана в1967 г. под руководством Ю.Н. Липского в масштабе 1:5000000 на основе наемных фотографий и снимков космических миссий «Луна-3» и «Зонд-3» [44, 58]. Приполярные области данной карты построены в азимутальной проекции в масштабе 1:10000000, а область между параллелями ±60° в произвольной цилиндрической проекции. Ограничение по широте объясняется тем, что тогда еще не было достаточного количества данных по широтам выше $\pm 60^{\circ}$. Расчеты показывают, что в произвольной цилиндрической проекции для широт заключенных в диапазоне $\pm 50^{\circ}$ искажения углов не превышают $\pm 5^{\circ}$, на широтах $\pm 60^{\circ}$ угловые искажения меньше чем 14°, причем непосредственно области типа лунных морей имеют искажения в гораздо меньше. Следующим шагом стало издание в 1969 году версии карты, при построении которой были уже использованы данные космической миссии «Lunar Reconnaissance Orbiter», причем была выполнена трансформация системы координат снимков обратной стороны Луны в единую с видимой стороной систему селенографических координат. Далее, на основе использования всех имевшихся к тому моменту данных космических миссий, таких как «Apollo», в 1979 г., была создана третья версия «Полной карты Луны» [42]. Особое внимание при построении этой версии было уделено отображению рельефа кратерам с заполненным дном, цепочкам кратеров, лунным морям, лучевым образованиям. Большое внимание также уделялось отображению физических особенностей кратеров на лунной поверхности, таких как сравнительно малую глубину дна кратера по сравнению с его диаметром, малую крутизну внешнего склона по сравнению с внутренним, небольшая глубина кратерного вала в сравнении с его глубиной. Необходимо отметить и хорошо подобранные цвета при изображении аномалий рельефа.

В 2008 году на основе данных полученных с борта японского космического спутника «Kaguya» была построена «Топографическая карта Луны» (КТМ) [44]. На данной карте абсолютные высоты объектов и точек лунной поверхности определены значительно точнее, чем на предыдущих картах, например на картах, основанных на данных космической миссии «Clementine». Однако, как и у всех «космических» карт, в данном случае, также отсутствует как определенная система отсчета координат, и,

соответственно, и координатная сетка, так и практически нет отождествления большинства объектов лунных образований.

В 2012 году увидела свет еще одна полная «космическая» карта, построенная по данным китайской космической программы Chinese Lunar Exploration Program. Данная программа направлена на роботическое освоение Луны и создание на ней обитаемых баз и осуществляется Китайским национальным космическим агентством (CNSA), и данные получены с бортом космических аппаратов Chang'e. Данная карта созданиа в виде глобальной цифровой модели рельефа Луны и имеет те же недостатки, как и японский вариант.

Одной из последних работ в данном направлении стало создание германским аэрокосмическим центром трёхмерной модели Луны Карта GLD 100 (Global Lunar Digital Terrain Model), покрывающей 98% лунной поверхности [44, 134] и основанной на данных космической миссии LRO. На карте высоты представлены с шагом 100 метров. Карта была тщательно выверена по измерениям лазерного высотного сканера, установленного на космическом спутнике LRO.

2.2. Система координат Гайна

На Рисунке 2.2.1 представлена селенографическая система координат Гайна (*P* и *D*). Данная система координат используется нами при моделировании краевой зоны Луны [51].

Точка пересечения нулевого меридиана с лунным экватором является положительным полюсом, координата *D* отсчитывается по направлению к Земле.

Важен переход от селенографических координат к координатам Гайна. Для вывода формул используется вспомогательная сфера, описанная около центра Луны.

Рисунок 2.2.1 Система селенографических координат Гайна [51]

В точке Z - видимая середина лунного диска; N' северный полюс Луны; C - позиционный угол дуги большого круга ZN'. Большой круг O_1NE имеет полюс в точке Z, следовательно, параллелен видимому краю Луны. O – наблюдаемая точка; O_1 - точка пересечения круга O_1NE большим кругом, проходящим через центр Z и через наблюдаемую точку O. Точка A начало счета долгот на лунном экваторе AE. N'ZB - большой круг. $AB = \lambda_0, BZ = \beta_0$. Точка O_1 расположена на невидимой стороне Луны, недалеко от точки O.Угол $N'ZO_1 = I' = p_0 - C$, угол $N'ZA = \chi$ и угол $N'AZ = \varphi$. Гайновская координатная система P и D очень удобна для представления моделей либрационной зоны Луны и поэтому является основой практически всех современных карт краевой зоны Луны.

Для установления связи с экваториальными и гайновскими координатами необходимо применить следующий алгоритм. Имеются геоцентрические экваториальные координаты, параллакс и радиус Луны *α*,*δ*,*π*,*R* точки к краевой зоне Луны (ТКЗЛ).

Вычисляются топоцентрические величины $\alpha', \delta', \pi', R'$ и топоцентрический радиус - вектор (центра масс Луны – ТКЗЛ) - R'_* и топоцентрический позиционный угол звезды относительно центра масс Луны θ'_* .

$$\cos R'_{*} = \sin \delta_{*} \sin \delta' + \cos \delta_{*} \cos \delta' \cos(\alpha_{*} - \alpha'),$$

$$\sin \theta'_{*} \sin R'_{*} = \cos \delta_{*} \sin(\alpha_{*} - \alpha'),$$

$$\cos \theta'_{*} \sin R'_{*} = \sin \delta_{*} \cos \delta' - \cos \delta_{*} \sin \delta' \cos(\alpha_{*} - \alpha'),$$

(2.2.1)

где α_*, δ_* - прямое восхождение и склонение ТКЗЛ. Затем по формулам

$$\sin b^{"} = -\sin \delta' \cos i + \cos \delta' \sin i \sin(\alpha' - \Omega'),$$

$$\cos b^{"} \sin(l^{"} + \phi - 180^{0}) = -\sin i \sin \delta' - \cos i \cos \delta' \sin(\alpha' - \Omega'),$$

$$\cos b^{"} \cos(l^{"} + \phi - 180^{0}) = -\cos \delta' \cos(\alpha' - \Omega'),$$

$$\cos b^{"} \sin C^{"} = \sin i \cos(\alpha' - \Omega'),$$

$$\sin C^{"} = \sin i \cos(l^{"} + \phi - 180^{0}) \sec \delta',$$

(2.2.2)

Вычислили топоцентрические величины оптической либрации Луны в долготе, широте и позиционном угле $l^{"}, b^{"}, C^{"}$. После этого по формулам

$$\sin P \cos D = \sin \ddot{I} \cos l^{"} \cos R'$$

$$+ \cos \ddot{I} \sin l^{"} \cos R' \sin b^{"} - \sin l^{"} \cos b^{"} \sin R',$$

$$\cos P \cos D = \cos \ddot{I} \cos b^{"} + \sin b^{"} \sin R',$$

$$\sin D = \cos l^{"} \cos b^{"} \sin R' - \sin \ddot{I} \cos l^{"} \sin b' + \sin \ddot{I} \sin l^{"},$$
(2.2.3)

где $\ddot{I} = \theta_* - C$, определяются координаты P,D для точки на поверхности Луны.

2.3. Каталог объектов в либрационной зоне Луны

В настоящее время имеется множество задач ПО привязке селенографических сетей, построенных на видимой стороне Луны к координатным системам, полученным из космических миссий, на обратной стороне Луны. Связью между такими навигационными системами могла бы стать опорная сеть, созданная в либрационной зоне Луны. Трудность построения такой сети заключается в том, что по наземным наблюдениям практически невозможно получить координаты кратера в либрационной зоне из-за отсутствия стереоэффекта между перекрывающимися снимками, а по космическим из-за неизвестной ориентации поверхности отсчета. В настоящей работе построен каталог опорных кратеров в либрационной зоне на основании оригинальным методом, которого удалось получить координаты объектов в динамической системе координат.

Метод построения опорного селенодезического каталога объектов в либрационной зоне состоит из следующих основных этапов: приведение изогипс карт Уоттса с поправками Моррисона [121] к системе карт «Казань» в электронном виде; отождествлению кратеров на картах краевой зоны с использованием Полной карты Луны [59], [46], созданной ГАИШ МГУ и уточнение их положения по картам КТМ; далее с использованием программного пакета MAPS были определены уточненные координаты кратеров в системе гайновских координат с использованием динамических карт либрационной зоны, и, в итоге, получены прямоугольные координаты опорных объектов и проведен анализ их точности.

Предварительные координаты кратеров находились на основе отождествления объектов на картах краевой зоны и топографических картах лунной поверхности с использованием метода решения обратной задачи привязки. Зная координаты объекта на картах, вычислялись его координаты *P*,*D*, *р* по формуле:

$$\begin{pmatrix} \rho_0 \sin D_0 \\ -\rho_0 \cos D_0 \sin P_0 \\ \rho_0 \cos D_0 \cos P_0 \end{pmatrix} = R_m \begin{pmatrix} \sin \lambda_m \cos \beta_m \\ \sin \beta_m \\ \cos \lambda_m \cos \beta_m \end{pmatrix}$$
(2.3.1)

где ρ_0 - приближенный селеноцентрический радиус - вектор точки лунной поверхности, $R_m, \lambda_m, \varphi_m$ соответственно радиус-вектор, селенографические долгота и широта отождествленной точки.

С целью создания электронной модели карт «Казань» в АОЭ была проделана работа по внесению данных этих карт в электронную базу данных согласно их координатам P и D [47, 50, 126]. При этом производился контроль для исключения точек, имеющих явные ошибочные значения, сравнением наших данных с высотами неровностей лунного края на картах Уоттса. При этом в карты Уоттса были введены все поправки, полученные Моррисоном и Аплеби для приведения их системы координат к центру масс Луны. Данное исследование показало хорошее согласие высот неровностей лунного края на картах Уоттса, исправленных поправками Моррисона, и картами «Казань», нами не было найдено ни одного явно ошибочного значения высоты в картах «Казань».

Для нахождения поправок за неровности лунного края с полученных нами карт сначала вычисляются гайновские координаты – *P*, *D*. При интерполяции данных с карт Уоттса в машинно - читаемом виде Моррисон [124] вынужден был исправлять позиционный угол и следить за наклоном лунного экватора. В нашем случае никаких дополнительных поправок вводить не требуется.

Подпрограмма интерполяции данных с наших карт в машинночитаемом виде написана на языке Фортран. Сначала восстанавливаются с диска все данные для всех точек неровностей лунного края, входящих в границы интерполяционного круга, центром которого является точка, для которой определяется поправка на высоту. Причем, радиус круга зависит от

количества и равномерности распределения этих точек вокруг исследуемой точки.

Интерполяционный круг разделяется на двадцать четыре равных сектора. Специальная подпрограмма находит в каждом секторе наиближайшую к центру кругаточку карт, где находится исследуемая точка, и затем определяет ее высотные данные.

Затем используется метод интерполяции данных с карт краевой зоны Луны в машинном виде, аналогичный методу, предложенному Моррисоном и Мартином [124] с небольшими изменениями. У каждой точки карт есть высота h_k и ее расстояние от центра интерполяционного круга d_k . Значения высот точек h_k и расстояний d_k этих точек (k = 1,2,3,...,m) далее используются для вычисления интерполируемой высоты - H_j исследуемой точки по формуле

$$H_{j} = \sum_{k=1}^{m} (P_{k}(h_{k}/d_{k})) / \sum (1/d_{k}), \qquad (2.3.2)$$

где k соответствует количеству точек в секторах, а P_k - вес определения H_j исследуемой точки, зависящий от того, как располагаются точки карт в секторах.

Этот метод "взвешивания" позволяет определить высоты исследуемой точки в пределах ошибки 0.1[°]. При интерполяции в поиске участвуют все данные карт в пределах интерполяционного круга. Чем дальше расстояние от исследуемой точки до точки карт, тем меньше вес.

Метод прост и требует самого минимального числа исходных точек. Также нет необходимости в проведении каких-то специальных действий по дополнительным вычислениям и построениям в самих картах.

Однако, в нашем случае на основе карт «Казань» было необходимо определить также плановые координаты центров искомых объектов, и уже потом находить высотные данные заданных точек, из которых затем легко можно вычислить радиусы центры объектов. Поэтому был разработан

алгоритм нахождения уточненных программный координат опорных кратеров на основе программного пакета MAPS. С использованием пакета MAPS вначале строилась на основе гармонического анализа модель исследуемого участка в либрационной зоне, затем находился определяемый объект и программным способом исследователь помещал в место расположения этого объекта эллипс так, чтобы он визуально наилучшим образом вписывался в границы кратера, при этом изменяя его размеры и положение на модели. В итоге геометрический центр эллипса считался точным положением исследуемого объекта, находились точные гайновские координаты кратера и его высота и в итоге вычислялись его прямоугольные координаты по формуле:

$$\begin{pmatrix} \xi_{\kappa} \\ \eta_{\kappa} \\ \zeta_{\kappa} \end{pmatrix} = \begin{pmatrix} \rho_{k} \sin D_{k} \\ -\rho_{k} \cos D_{k} \sin P_{k} \\ \rho_{k} \cos D_{k} \cos P_{k} \end{pmatrix}, \qquad (2.3.3)$$

где ξ_K , η_K , ζ_K прямоугольные координаты объектов в либрационной зоне Луны.

К настоящему времени нами создана опорная селеноцентрическая сеть, содержащая координаты 40 объектов либрационной зоны Луны, распространенная достаточно равномерно относительно лунного лимба и построенная в системе центра масс и главных осей инерции Луны. Прямоугольные координаты этих объектов приведены в таблице 2.3.1.

В таблице первый столбец это номер по порядку, далее идут прямоугольные селеноцентрические координаты кратера ξ_K , η_K , ζ_K в долях радиуса Луны и затем его селенографические долгота и широта λ_k , φ_k в градусах и радиус-вектор H_K в километрах, средний радиус Луны при вычислениях принят равным 1738.1 км.

Таблица 2.3.1 Прямоугольные координаты этих объектов

N	Ķ	n	ŗ	2	(0	H_{K}	
п/п	ς_K	η_K	5 <u>K</u>	\mathcal{N}_{K}	φ_K		
1	0.56791	0.78234	0.25213	66.06	51.54	1736.5	
2	0.62688	0.72582	0.27826	66.06	46.62	1735.7	
3	0.62250	0.73011	0.27644	66.05	46.98	1735.5	
4	0.63555	0.73262	0.23999	69.31	47.16	1736.6	
5	0.68287	0.72879	-0.03232	92.71	46.83	1736.8	
6	0.68495	0.72272	-0.07804	96.50	46.35	1736.0	
7	0.76860	0.62317	-0.13514	99.97	38.60	1735.8	
8	0.77537	0.60804	-0.15867	101.56	37.53	1734.7	
9	0.82127	0.56046	-0.09533	96.62	34.13	1736.1	
10	0.91776	0.39148	-0.04875	93.04	23.07	1736.3	
11	0.92140	0.38586	0.03119	88.06	22.71	1737.1	
12	0.90977	0.40245	0.09703	83.91	23.74	1737.3	
13	0.95007	0.29158	0.09611	84.22	16.98	1735.4	
14	0.95520	0.28873	0.03667	87.80	16.80	1735.6	
15	0.97796	-0.16667	0.12102	82.94	-9.60	1737.1	
16	0.96243	-0.26079	-0.06993	94.15	-15.12	1737.4	
17	0.95288	-0.30178	0.00245	89.85	-17.57	1737.3	
18	0.94770	-0.30658	-0.07146	94.31	-17.87	1735.7	
19	0.83549	-0.54322	0.07551	84.83	-32.92	1737.1	
20	0.70331	-0.70343	0.10480	81.52	-44.69	1738.5	
21	0.73510	-0.67697	0.02520	88.03	-42.62	1737.5	
22	0.69239	-0.71992	0.03551	87.06	-46.07	1737.2	
23	0.51303	-0.84419	0.14695	74.01	-57.70	1735.9	
24	0.69838	0.71445	0.02094	88.28	45.63	1736.9	
25	0.71372	0.69818	-0.03909	93.13	44.32	1736.7	
26	0.84598	0.53007	0.04545	86.92	32.03	1737.0	

27	0.87857	0.45105	0.15663	79.89	26.81	1738.0
28	0.87712	0.40351	0.25844	73.58	23.81	1737.2
29	0.91931	0.38983	0.04437	87.23	22.95	1737.3
30	0.93882	0.30665	-0.15153	99.16	17.87	1736.7
31	0.98456	0.04733	0.17220	80.07	2.71	1739.2
32	0.99114	-0.08071	-0.09263	95.33	-4.63	1735.9
33	0.99125	-0.12307	-0.02542	91.46	-7.07	1736.7
34	0.96312	-0.26318	-0.04168	92.47	-15.27	1736.9
35	0.94350	-0.31086	-0.10641	96.43	-18.12	1736.5
36	0.76257	-0.64475	0.06617	85.04	-40.10	1739.5
37	0.77755	-0.62329	-0.06448	94.74	-38.62	1735.7
38	0.67657	-0.69990	0.22861	71.33	-44.42	1738.0
39	0.61108	-0.78605	0.07847	82.68	-51.91	1735.9
40	0.60855	-0.78958	0.07039	83.40	-52.19	1737.0

Был проведен сравнительный анализ вычисленных данных. Сравнение определенных координат кратеров с отметками высот, полученными миссиями Clementine и Kaguya, показали их хорошее согласие. Также хорошее согласие было получено и при сравнении с данными опорного каталога, полученного в третьей главе настоящей работы. Глава 3. Построение опорного каталога объектов на поверхности Луны в небесной системе координат

3.1 Селенографические каталоги лунных объектов

1839 год является началом эры визуального определения координат лунных объектов, именно в это время Ф. Бессель предложил гелиометрический метод изучения Луны [83], [84].

В. Никонов и Т. Скобелева [54] произвели исследование каталогов Шрутка - Рехтештамм 1, Шрутка - Рехтештамм 2, Болдуин, ГАО АН УССР, ACJC, AMS, Миллса по оценке ср. кв. ошибок ε_b высот близких точек на равнинной поверхности по отношению к средним ошибкам, приведенных самими авторами ε_a . Надежность селенодезических систем определялась по критериям малости ε_b и ε_a , и наилучшего совпадения ε_b и ε_a . Результаты этого исследования показали, что самым надежным оказался каталог Миллса, затем ACJC, далее AMS. Согласно исследованиям, выполненным в работах [52, 53, 54], точность определения положений центров селенодезических каталогов на порядок выше точности определения высот, именно это явилось причиной приведения различных каталогов к единому центру со средней квадратичной ошибкой в три раза меньше ошибки непосредственных определений координат в исходных селенодезических системах. В ГАО АН УССР был создан сводный каталог 2580 точек, у которого также наблюдался выше описанный эффект [31, 52]. Причем, если ориентацию осей и масштаб системы данного каталога определили по каталогу Артура [80], то начало координат определили на основе наблюдений с космических аппаратов ЛУНА 10 и Lunar Orbiter. В. Кислюк провел анализ на основе снимков с КА «Зонд-8» [37] и пришел к выводу, что поправки к высотам некоторых кратеров имеют большие значения и система реализуется достаточно

надежно, о чем свидетельствует равенство средних уровней по участкам до и после уточнения [38].

Продолжением каталога [31] стала сеть 4900 точек [30]. Преимущество данного каталога: 1) увеличение числа каталожных объектов; 2) уточнение ориентации и начала системы координат каталога на основе результатов лазерной альтиметрии лунной поверхности с борта КК «Аполлон - 15, -16».

Авторы Единой системы селенодезических координат [41] применили другой подход. Все девять каталогов, содержащие 2900 объектов, были приведены к единому центру и единой ориентации координатных осей. Причем, каждый входящий в [41] каталог представлен отдельно от всей других в двух вариантах: координаты, отнесенные к центру фигуры и координаты, отнесенные к центру масс. Мы думаем, такой подход был наиболее правильным на соответствующем этапе создания опорных селенодезических сетей.

Затем наступил этап в области создания опорных лунных сетей, основанных на абсолютно независимом от других систем определении ориентации и начала координат селенодезического каталога. К. Шакиров является первым автором такой работы. Он обработал гринвичские меридианные наблюдения кратера Местинг A и получил его положение в системе эфемеридного центра масс Луны [70]. Это исследование позволило Шакирову найти взаимное положение центра масс относительно центра фигуры Луны [69]. Но полученные Шакировым результаты не согласуются с современными представлениями, потому что он использовал броуновскую теорию движения Луны по Брауну.

Необходимо отметить работу С. Валеева [11] по созданию независимых опорных сетей точек видимой стороны Луны. Независимая селенодезическая сеть, построенная С.Г. Валеевым, состояла из 30 лунных кратеров, по 13 крупномасштабным снимкам Луны со звездами. Было осуществлено независимое определение масштаба И ориентации фотопластинок по звездам и получены координаты кратеров в системе

эфемеридного центра масс. Однако, не удалось достичь высокой точности координат лунных кратеров, из-за ограниченного количества астрофотографий.

Луны одновременно Метол фотографирования co звездами на фотопластинки с использованием длиннофокусного раздельные горизонтального телескопа с целостатом [6], [7], [8], [9], [56], [57], явился прогрессом в построении независимых селенодезических опорных сетей по наземным наблюдениям. Был создан специальный метод для привязки одной пластинки к другой [10], благодаря которому осуществлялся переход от системы звездной пластинки к системе лунной. Затем в Казани был создан каталог 264 лунных объектов на абсолютной основе [106]. Ошибки плановых координат лунных объектов оказались в среднем равны $20 \times 10^{-5} R_{\sigma}$, а координаты направленной к Земле приблизительно в три раза больше. Анализ каталога показал, что реализуемая им система координат в целом близка к динамической.

Относительно селенодезических каталогов, построенных на основе космических наблюдений можно сказать следующее:

Глобальным космическим исследованием Луны было благодаря запуску пяти фотографических спутников «Лунар Орбитер 1-5», с помощью них было получено 6000 снимков практически всей лунной поверхности, но точность данного материала оказалась слишком низкой для серьезного селенодезического анализа [36].

Таким образом, первый космический каталог был построен по данным космической миссии «Apollo», и им стал каталог А. Шимермана [132], [133]. Специальная метрическая камера позволяла с борта корабля одновременно фотографировать и поверхность Луны и звездного поля, а также производить лазерную альтиметрию фотографируемых участков. Используя фотограмметрические методы обработки лазерные и фотографические наблюдения Луны были приведены в единую систему. Затем были получены

координаты лунных объектов в системе центра масс Луны. Последнее осуществлено из сравнительного анализа баллистических орбитальных эфемерид и лунных гравитационных и либрационных моделей. Однако, опорная сеть [132], [133] покрывает всего 10% лунной поверхности (полоса шириной 150 - 500 км., простирающаяся по долготе от 60° с запада до 70° на восток в экваториальной зоне). Координаты имеют расчетную точность 20 - 40 метров по высоте и ±300 метров в плановых координатах. Также остается неизвестной точность ориентации осей системы координат относительно лунных осей инерции и сдвиг ее по отношению к центру масс Луны [132].

В дальнейшем, данные с космических спутников «Зонд - 6,8» позволили обнаружить на обратной стороне Луны обширную низменность [58], а фотографии лимбов, полученные с борта космического корабля «Аполлон - 11», определить профиль рельефа восточного сектора лунного диска [48].

[60], По результатам лазерной альтиметрии на основе всех вышеописанных исследований был найден средний радиус лунного трехосного эллипсоида, равный 1737.7 км [102] и средний радиус экваториальной зоны 1737.7 км. Современные методы определения рельефа Луны предполагают аппроксимацию набора измерений высот разложением в ряды по сферическим или выборочным функциям [60].

Исследования по редуцированию данных с космического аппарата «Apollo» выполнены в работе [102]. На основе наблюдений с космического аппарата Lunar Orbiter, Apollo 15, 16, и 17, и изображений, полученных космическими спутниками Зонд 6 и 8, была построена опорная сеть на видимой полусфере Луны, которая содержала 1166 пунктов. Задача работы состояла в объединении всех источников данных в единую согласованную унифицированную опорную сеть.

По результатам программы «Apollo» были созданы три опорные сети: DMA/A 15, NOS/USGS, и DMA/603 [116]. Для того чтобы трансформировать каждую из этих сетей на систему координат, основанную на положениях трех

станций ALSEP, были вычислены соответствующие параметры перемещения, вращения и изменения масштаба длин.

Рисунок 3.1.1 Границы области фотосъемки поверхности Луны мисии «Apollo» [116].

Среднеквадратичные ошибки оказались равными 58 м для DMA/603, 73 м для DMA/A15, и 76 м для NOS/USGS. Среднее смещение координат ALSEP было 308 м для DMA/603, 333 м для DMA/A 15, и 2110 м для NOS/USGS. Все три опорных сети были получены по одним и тем же измерениям и по существу для одних и тех же точек; тем не менее, координаты самих точек часто существенно отличались. После соответствующих преобразований, координаты стали более сопоставимыми. DMA/A 15 и NOS/USGS имели 3791 общих точек. Средний сдвиг координат перед преобразованием составил 1995 м, а после того, как преобразование было произведено, стало 334 м. DMA/A 15 и DMA/603 имели 4284 общих точек; среднее различие координат перед преобразованием было 340 м, а после того, как преобразование было произведено, стало 300 м. NOS/USGS и DMA/603 имели 2624 общих точек; средний сдвиг перед преобразованием был 2140 м, а после того, как преобразование было произведено, стал 274 м.

Тhe Unified Lunar Control Network 2005 – ULCN 2005 является самой полной лунной глобальной координационной системой [77]. ULCN 2005 является фотограмметрической сетью, крупнейшей планетарной опорной сетью, развитие которой продолжается [77]. ULCN 2005 включает в себя положения в 3-D измерениях 272931 точек лунной поверхности и исправление углов камеры Clementine для 43 866 снимков, используя измерения 546126 общих точек. Средняя квадратичная ошибка вычислений составляет 0,9 пикселя в плоскости снимка, а самая большая невязка 6,4 пикселей. Основные методы создания сети описаны в [78] а подробное описание результатов изложено в [79].

Первоначальный вариант опорной сети ULCN 2005 был основан на снимках, полученных миссией Clementine (опорная сеть CLCN) и опорной сети, при построении которой использовались данные космических миссий Apollon, Mariner 10, и Galileo совместно с наземными фотографиями ULCN [93]. Значимость последней упомянутой опорной сети заключается в том, что ее точность относительно неплохая, и она имеет хороший количественный CLCN была получена с целью определения геометрических состав. параметров для Карты Base Clementine [156]. Эти параметры были Clementine UVVIS использованы для создания (цифровой модели изображений) [157] и инфракрасной глобальной мультиспектральной карты Луны от Clementine [100, 139]. Далее были предприняты усилия по объединению этих двух сетей в улучшенную систему ULCN. В результате была получена крупнейшая фотограмметрическая опорная сеть.

Основное отличие между ULCN 2005 и предыдущими сетями состоит в том, что ищется решение для радиусов контрольных точек. Это позволяет избежать искажения горизонтальных положений (около 7 км в среднем и до 15 км и более [91], [92], [114]), присутствующих в CLCN в первую очередь из-за того, что положения этих точек в CLCN ограничивается поверхностью сферы радиуса 1736,7 км. Это возможно сделать, поскольку из перекрытия снимков миссии Clementine действительно можно получить стерео

информацию. Точность такой информации составляет порядка нескольких сотен метров, и эти данные совместимы с высотными данными Clementine LIDAR [137], однако средняя абсолютная разница между ULCN 2005 и LIDAR порядка 700 м. Эта разница оказалась больше, чем ожидалось, и проводится анализ данных, но, тем не менее, показано, что радиусы при этом восстанавливаются, В хорошей точности достигая итоге значений. Недостатком данной сети является глобальная селенографическая модель, которая более полная, чем дает LIDAR, но при этом имеет такую же точность положений объектов, и, соответственно, более полная, чем любые другие области информационные модели в селенографии, за исключением некоторых ограниченных областях на лунной поверхности [91], [131]. Информация по радиусам точек, входящих в ULCN 2005, также определяется последовательной, полной и абсолютной 3D-системой. Это является единственным источником лунной топографической информации, где и высоты и плановые положения объектов приведены в общую согласованную систему. Вторая существенная особенность ULCN 2005 заключается в том, ракурсов камеры, что были введены ограничения на все значения измеряемых в ходе миссии, предположительно с точностью 0,03° [128]. Применялось ограничение 1°. Считается, что такой подход обеспечивает значительное улучшение в плановых координатах (и, следовательно, повышает точность и по высотным данным), так как в среднем амплитуда высоты равна 640 км, предполагаемая точность в плановых положениях в связи с ограничением точности 0,03° априорной информации, составляет 335 метров. Так как 99% углов ориентации изменяется менее чем на 0,45°, учитывая это и высоту 640 км, следовало бы предположить, что даже если бы априорно углы были идеальные, наибольшие горизонтальные ошибки составили бы 5,1 км. Это также предполагает, что положения космического корабля, которые мы не можем изменять, являются идеальными. Очевидно, что это не так, но приведенные ошибки [155] положения орбиты (по крайней мере в радиальном направлении) составляют ~ 100 м, которые, когда

увеличим ошибки местоположения с RSS (root sum square – квадратный корень из суммы квадратов), это по-прежнему вызовет дополнительные ошибки максимум несколько сотен метров. Третьей особенностью является то, что было определено большинство исходных точек сети ULCN на снимках миссии Clementine и эти измерения были включены в новую сеть ULCN 2005 (1261 точек были измерены, а 754 из них имели два или более измерений). Это позволило осуществить прямое трансформирование ULCN в систему ULCN 2005. Это было выполнено путем взвешивания точек сети образом ULCN соответствующим [77]. Эта привязка к ULCN и использование априори миссией Clementine данных космического аппарата в системе отсчета ME (Mean Earth/polar axis system -система координат средняя Земля / полярная ось, где ось Z направлена по вектору среднего вращения лунного полюса, а вектор среднего направления на Землю лежит в плоскости нулевого меридиана) также ориентирует финальную сеть в этой системе [79].

В настоящее время проводятся работы по внесению цифровых данных миссии Lunar Orbiter в систему ULCN 2005 [150] и продолжаются работы по совершенствованию опорной сети прямым использованием снимков миссий Mariner 10, Galileo и Lunar Orbiter и стерео снимков Clementine [91]. Также ведутся работы по установлению взаимной связи с абсолютным системами LLR и ALSEP [94]. Система ULCN 2005 будет обновляться с использованием данных, которые будут полученных в будущих миссиях. Это необходимо для того, чтобы эти новые наборы данных могли бы быть сравнены с предыдущими результатами, в частности, с мультиспектральными данными, полученными в миссиях Lunar Orbiter и Clementine.

Современные селенодезические сети не являются равноточными по различным координатным осям и обладают эллипсоидальным распределением ошибок. Существует два основных метода для устранения этих недостатков [29]:

1) использование стереофотограмметрии с достаточным базисом;

2) комбинирование данных, полученных по наземным наблюдениям Луны

с данными, полученными космическими аппаратами.

3.2 Селенографические системы координат

В качестве основной плоскости средней селеноцентрической системы координат ОХҮZ (Рисунок 3.2.1) обычно выбирают плоскость среднего экватора Луны [39], наклон которого к эклиптике сохраняет постоянное значение I, а долгота нисходящего узла на эклиптике в любой момент времени равна долготе восходящего узла лунной орбиты [50, 62, 64, 63, 71]. Ось ОZ перпендикулярна плоскости среднего экватора Луны и направлена к северу, ОХ совпадает с первым радиусом Луны, который определяется пересечением плоскости среднего экватора Луны с плоскостью лунного меридиана, проведенной через центр масс Земли в момент, когда средняя долгота Луны равна долготе восходящего узла ее орбиты, ось ОҮ лежит в основной плоскости и дополняет систему координат до правой (Рисунок 3.2.1).

Рисунок 3.2.1 Селеноцентрическая и селенографическая системы координат[50]

Селенографическая, т.е. динамическая система координат *Оξηζ* жестко связана с телом Луны [119]. Иначе, эту систему координат можно определить

как систему осей инерции, в которой ось ζ направлена к Земле, ось ξ - к северному полюсу Луны, и ось η дополняет систему координат до правой. Оси селенографической системы координат $O\xi\eta\zeta$ совпадают с главными осями эллипсоида инерции Луны, а начало системы координат расположено в центре масс Луны.

Иногда вводиться квазидинамическая система координат [36], оси которой совпадают с главными осями инерции Луны с точностью до постоянных членов в разложениях физической либрации, что, естественно, ведет к смещению ориентации осей квазидинамической системы по отношению к осям лунного эллипсоида инерции. Квазидинамическая система координат использована при составлении большинства селенодезических каталогов.

На Рисунке 3.2.2 [5, 51] *l,b* – селенографические долгота и широта Земли или центра диска Луны, видимого из центра Земли. Они включают оптическую и физическую либрации Луны.

l',*b*' - оптическая либрация в долготе и широте Луны.

l",*b*" - физическая либрация в долготе и широте.

P - угол положения средней оси вращения Луны (угол между лунным меридианом, проходящим через центр видимого диска Луны, и кругом склонений, проходящим через ту же точку на орбите).

 λ, β - видимые геоцентрические долгота и широта Луны.

Р - угол положения мгновенной оси вращения Луны.

i,*i*₁ - наклон среднего (истинного) лунного экватора к истинному экватору Земли.

Δ, Δ₁ - угловое расстояние от восходящего узла среднего (истинного) лунного
 экватора на истинном экваторе Земли до восходящего узла среднего
 (истинного) лунного экватора на эклиптике.

Ω', Ω', - угловое расстояние восходящего узла среднего (истинного) лунного экватора на истинном экваторе Земли от истинной точки весеннего равноденствия.

I - наклон среднего экватора Луны к эклиптике.

- Ω средняя долгота восходящего узла орбиты Луны на эклиптике.
- ₵ средняя геоцентрическая долгота Луны.
- \tilde{A} -средняя долгота солнечного перигея
- \tilde{A} средняя долгота перигея лунной орбиты.

Рисунок 3.2.2 Элементы селенографической сферы [5]

Значения *l,l',b,b'* можно определить из соотношений [1, 2, 3, 5]:

$$\begin{pmatrix} \cos b \cos l \\ \cos b \sin l \\ \sin b \end{pmatrix} = \bar{r}(180^{\circ} + \mathbb{Q} + \tau - \Omega - \sigma)\bar{p}[-(I + \rho)\bar{r}(\Omega + \Delta \Psi + \sigma) \times \\ \times \begin{bmatrix} \cos(-\beta)\cos(180^{\circ} + \lambda) \\ \cos(-\beta)\sin(180^{\circ} + \lambda) \\ \sin(-\beta) \end{bmatrix},$$
(3.2.1)
$$\begin{pmatrix} \cos b' \cos l' \\ \cos b' \sin l' \\ \sin b' \end{pmatrix} = \overline{r}(180^{\circ} + \mathbb{C} - \Omega)\overline{p}(-I)\overline{r}(\Omega + \Delta \Psi) \times \\ \times \begin{bmatrix} \cos(-\beta)\cos(180^{\circ} + \lambda) \\ \cos(-\beta)\sin(180^{\circ} + \lambda) \\ \sin(-\beta) \end{bmatrix},$$
(3.2.2)

где \bar{r}, \bar{p} - матрицы-операторы относительно осей Z и X соответственно, $\Delta \Psi$ - нутация по долготе.

Для заданного угла а матрицы поворотов имеют вид:

$$\overline{p}(a) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos(a) \sin(a) \\ 0 & -\sin(a) \cos(a) \end{vmatrix}, \ \overline{r}(a) = \begin{vmatrix} \cos(a) \sin(a) & 0 \\ -\sin(a) & \cos(a) & 0 \\ 0 & 0 & 1 \end{vmatrix}.$$
(3.2.3)

 $b^{"}$, $l^{"}$ представляют собой поправки к приближенно заранее известным широте b' и долготе l' точки Е за переход от системы координат ОХҮZ к системе О ξ , η , ζ за счет физической либрации Луны. Эти значения можно вычислить по формулам:

$$b = b' + b'', l = l' + l'',$$

$$b'' = -\rho \sin((-\Omega + l') + \sigma \sin I \cos((-\Omega + l')),$$

$$l'' = -\tau + (\rho \cos((-\Omega + l')) + \sigma \sin I \sin((-\Omega + l')) \tan b'.$$

(3.2.4)

Величины Р и Р находятся из уравнений:

$$\sin P = \sin i_1 \cos(l + \Delta_1 + (-\Omega) \sec \delta) = \sin i_1 \cos(\alpha - \Omega_1) \sec b,$$

$$\sin P = \sin i \cos(l + \Delta + (-\Omega) \sec \delta) = \sin i \cos(\alpha - \Omega_1) \sec b.$$
(3.2.5)

Угол P'' = P - P' называется физической либрацией в угле положения оси вращения Луны.

Фундаментальные аргументы 1,1, *F*, *D* имеют следующий вид:

$$1 = 485\ 866^{"}733 + (1325^{r} + 715\ 922^{"}633)T + 31^{"}310T^{2} + 0^{"}064T^{3},$$

$$1 = 1\ 287\ 099^{"}804 + (99^{r} + 1\ 292\ 581^{"}224)T - 0^{"}577T^{2} - 0^{"}012T^{3},$$

$$F = 335\ 778^{"}877 + (1342^{r} + 295\ 263^{"}134)T + 13^{"}257T^{2} + 0^{"}011T^{3}, \quad (3.2.6)$$

$$D = 1\ 072\ 261^{"}\ 307 + (1236^{r}\ +1\ 105\ 601^{"}\ 328)T - 6^{"}\ 891T^{2} + 0^{"}\ 019T^{3},$$

$$\Omega = 450\ 160^{"}\ 280 - (5^{r}\ +482\ 890^{"}\ 539)T + 7^{"}\ 455T^{2} + 0^{"}\ 008T^{3},$$

где 1^г = 1 296 000[°], 1= \mathbb{C} - \tilde{A} - средняя аномалия Луны, 1[°] = $L - \tilde{A}$ - средняя аномалия Солнца, $F = \mathbb{C} - \Omega$ - средний аргумент широты Луны, $D = \mathbb{C} - L$ - средняя элонгация Луны и Солнца (разность их средних долгот), L - средняя долгота Солнца и Γ – средняя долгота солнечного перигея:

$$L = 1\ 009\ 677^{"}850 + (100^{r} + 2771^{"}210)T + 1^{"}089T^{2},$$

$$\tilde{A} = 1\ 018\ 578^{"}046 + 6\ 190^{"}046T + 1^{"}666T^{2} + 0^{"}012T^{3}.$$
(3.2.7)

Средний наклон ε_0 эклиптики к экватору вычисляется по формуле:

$$\varepsilon_0 = 84\ 381^{"}448-46^{"}8150T - 0^{"}00059T^2 + 0^{"}001813T^3.$$
 (3.2.8)

Т отсчитывается от стандартной эпохи J 2000 в юлианских столетиях по 36525 суток.

Из разложения фундаментальных аргументов получаются значения элементов лунной орбиты:

《=785 939[°]157 + (1336[°] +1 108 372[°]598)*T* − 5[°]802*T*² + 0[°]019*T*³−средняя долгота Луны.

 \tilde{A} = 300 072[°] 424 + (11^r + 392 449[°] 965)T – 37[°] 112T² + 0[°] 045T³ –средняя долгота перигея.

Введем следующие обозначения:

I = 555264 - постоянный наклон среднего лунного экватора к эклиптике,

є -истинный наклон экватора к эклиптике,

i,*i*₁-наклон среднего (истинного) лунного экватора к истинному экватору Земли.

Δ,Δ₁-угловое расстояние восходящего узла среднего (истинного) лунного экватора на истинном экваторе Земли от восходящего узла среднего (истинного) лунного экватора на эклиптике.

Ω',Ω',- угловое расстояние от истинной точки весеннего равноденствия до восходящего узла среднего (истинного) лунного экватора на истинном экваторе Земли.

Тогда элементы ориентации среднего и истинного лунных экваторов: Значения $i, \Delta, \Omega, i_1, \Delta_1, \Omega'_1$ вычисляются по формулам: $\sin i \sin \Delta = -\sin \varepsilon \sin(\Omega + \Delta \Psi),$ $\sin i \cos \Delta = +\sin I \cos \varepsilon - \cos I \sin \varepsilon \cos(\Omega + \Delta \Psi),$ $\cos i = \cos I \cos \varepsilon + \sin I \sin \varepsilon + \cos(\Omega + \Delta \Psi),$ $\sin i \sin \Omega' = \sin I \sin(\Omega + \Delta \Psi),$ $\sin i \cos \Omega' = \cos I \sin \varepsilon - \sin I \cos \varepsilon \cos(\Omega + \Delta \Psi),$ $\sin i_1 \sin \Delta_1 = -\sin \varepsilon \sin(\Omega + \Delta \Psi + \sigma),$ $\sin i_1 \cos \Delta_1 = \sin(I + \rho) \cos \varepsilon - \cos(I + \rho) \sin \varepsilon \cos(\Omega + \Delta \Psi + \sigma),$ $\cos i_1 = \cos(I + \rho) \cos \varepsilon + \sin(I + \rho) \sin \varepsilon \cos(\Omega + \Delta \Psi + \sigma),$ $\sin i_1 \sin \Omega'_1 = -\sin(I + \rho) \sin(\Omega + \Delta \Psi + \sigma),$ $\sin i_1 \sin \Omega'_1 = -\sin(I + \rho) \sin(\Omega + \Delta \Psi + \sigma),$ $\sin i_1 \cos \Omega'_1 = \cos(I + \rho) \sin \varepsilon - \sin(I + \rho) \cos \varepsilon \cos(\Omega + \Delta \Psi + \sigma),$

Существует несколько теорий физической либрации Луны (ФЛЛ): Экхардта [97, 98, 99], Мигус [117], Мунс [120]. Модели физической либрации Луны, используемые для разработки теорий Экхардта, Мигус и Мунс, основывались на разложении гравитационного потенциала Луны с точностью до второй сферической гармоники. Однако, в современных теориях вращения Луны рассматриваются члены, опущенные в прежних теориях и учитывающие гармоники разложения гравитационного потенциала выше второго порядка. Решение этой задачи выполняется методами численного интегрирования дифференциальных уравнений ФЛЛ.

В данной работе при вычислении величин *τ*,*ρ* è *σ* была использована теория физической либрации Луны, построенная А. Мигус [117].

3.3 Построение фундаментального каталога положений точек лунной поверхности

этапа исследований трансформация современных Цель данного каталогов положений лунных объектов в единую систему, которая будет с одной стороны являться динамической системой координат, а с другой строны достаточно полно охватывать как видимую, так и обратную стороны Луны, и имеющую центр отсчета данных, близкий к центру масс [27, 141, 142]. Опорная сеть, полученная на основе миссии «Apollo», а также снимкам обратной стороны Луны с АМС «Зонд-6», «Зонд-8», как известно, охватывают лишь некоторую часть лунной поверхности [116]. Дойл Ф.Д. и его коллеги провели анализ внутренней точности координатной системы, реализуемый топографическими данными Аполлонов [95], и пришли к выводу, что точность в плановых координатах лунных объектов достаточно сильно зависит от положения лунного объекта относительно треугольника, реализуемого станциями ALSEP (The Apollo Lunar Surface Experiments Package). Таким образом, можно сказать, учитывая квазидинамичность самих космических сетей, что в настоящее время с той или иной точностью к динамическим координатным системам для видимой стороны, можно опорную сеть, построенную с помощью гелиометрическим отнести: измерениям [48] и каталоги 264 кратера [105] и Казань-1162 [49], полученными на основе крупномасштабных снимков Луны со звёздами.

Отметим, что под динамической системой координат понимается следующее: центр системы координат совпадает с центром масс Луны, а оси системы координат совпадают с главными осями инерции Луны. Кроме того, как известно, каталог Казань-1162 является селеноцентрическим каталогом координат опорных объектов на видимой стороне Луны. Существуют этапы для построения единой системы координат при наличии базового каталога Казань-1162 и некоторого числа каталогов, содержащих объекты в либрационной зоне, на обратной стороне Луны, а именно [145, 148]

исследование систематических и случайных ошибок каталога Казань-1162, а также сгущение и расширение системы каталога Казань-1162 на видимую, обратную стороны Луны и либрационную зону.

С целью решения поставленной в настоящей работе задачи по трансформации и моделирования координатных систем использовались несколько программных модулей.

Программный модуль «Моделирование координатных систем» (МКС) разработан с использованием возможности использования для программирования современные программные продукты, такие как система Windows [27].

Архитектура данной программы состоит из двух независимые частей: ядро и графическая оболочка. Ядро включает в себя подклассы, которые в свою очередь реализуют основные функции, а управляющая подпрограмма позволяет осуществить взаимодействие с пользователем. Именно такая объектно-ориентированной соответствует парадигмой структура программирования. Представленная архитектура существенно упрощает взаимодействие С другими программными комплексами, ведь при необходимости, части ядра можно перемещать в другие проекты.

Командный модуль программы позволяет осуществлять контроль с пользователем, а также устранять ошибки, которые могут быть связаны с некорректными действиями пользователя. Ниже представлено краткое описание модулей, которые входят в ядро.

Вначале алгоритма обработки располагается подпрограмма первичной обработки данных. Данная подпрограмма позволяет осуществлять ввод данных, необходимых для решения поставленной задачи. Он содержит три основных компоненты: возможность трансформации координат из сферической системы в прямоугольную, трансформации координат из прямоугольной системы в сферическую и отождествление общих точек с одинаковыми прямоугольными координатами.

Далее идет подпрограмма для построения аналитической модели, с применением которой при использовании соответствующих исходных данных в конечном счете может быть получен соответствующий результат. Данная подпрограмма позволяет проводить анализ для матрицы поворота системы, вычислять векторы относительного положения начал систем того, учитывать координат исследуемых систем и, кроме условия ортогональности [12], численным [22] как аналитическим так И параметрическим методами.

В МСК входит также подпрограмма, которая предназначена для перевода прямоугольных координат из системы S_1 в систему S_2 по матрице поворотов A и вектору смещения S_0 .

Следующий программный модуль «Система поиска оптимальных регрессий» СПОР [12] в его современной модификации [18] применяется для научных исследований, состоящих в замене одних параметров другими, так или иначе близкими к первоначальным, но в итоге позволяющими создать более простые модели. С помощью данного модуля возможно осуществить также такие исследования, как анализ связей между несколькими независимыми переменными, выполнение программной процедуры регрессионного анализа, при которой независимые параметры могут пошагово вводится или выводится из уравнения регрессии, построение адаптивных моделей, анализ остаточных членов.

В систему каталога Казань-1162 было переведено 12 каталогов, а именно ACIC, AMS, ARTHUR, Baldwin, Goloseevo-1, Goloseevo-2, MILLS-2, SCHRUTKA-1, SCHRUTKA-2, описанные в работе [140], Киевский каталог [30], The Unified Lunar Control Network 2005 (ULCN 2005) [77] и каталог на западное полушарие Луны (Valeev) [11, 12].

Для модели (3.3.1.) при условиях (3.3.2) численным методом и методом без учета условий ортогональности [28] было осуществлено исследование с использованием поворотных матриц А и векторов смещения S₀.

$$S_2 = AS_1 + S_0,$$
 (3.3.1)

где А представляет собой матрицу поворота систем координат, S₀ является вектором сдвига центра отсчета координат системы S2 по отношению к координатной системе S1.

$$A^{T}A = E$$
, где detT=1. (3.3.2)

С использованием данного алгоритма возможно осуществить расширение координатной сети на видимой стороне Луны и перевод системы координат опорного динамического каталога Казань-1162 [28] на обратную строну. В связи с этим были решены три основные задачи:

1. Произведен анализ точности математической модели ортогональной трансформации координат;

Выполнено глобальное распространение системы каталога Казань 1162 с помощью редукции систем трансформируемых каталогов;

3. Осуществлено сгущение сети базисных точек каталога Казань-1162 на видимой стороне Луны, на основе редукции координат объектов, которые использовались для обработки из 12 каталогов.

В нашем случае именно используя численный метод можно было добиться прецессионного преобразования координат.

Известно, каталог Казань-1162 построен в динамической системе, в связи с этим возникает необходимость осуществить редукцию координат современных каталогов лунных положений в систему Казань-1162, используя матрицу ориентации A и вектор смещения S₀. Элементы вектора S₀ получены с помощью усреднения остатков, причем данные элементы не имеют геометрической интерпретации.

Для того, чтобы осуществить процедуру сгущения и распространения системы Казань-1162, были использованы элементы перехода A и S₀ уравнения (3.3.1). С учетом условий (3.3.2) на основе численного метода были получены используемые нами уравнения. Отождествление общих точек для двух систем S₁ и S₂ производилось с использованием специального программного модуля в селенографической системе координат (ξ, η, ζ) на

основе невязок координат, которые не превышали по модулю для ξ, η, ζ соответственно значения 0.001; 0.001; 0.002 лунного радиуса.

В векторной форме можно записать [28]:

$$\mathbf{A} \times \boldsymbol{\theta} + \boldsymbol{\varepsilon} = \mathbf{Z},$$
 (3.3.3)

где $\mathbf{A}(A_{ij})$ - переходная структурированная матрица, $\mathbf{\theta}(\Delta \xi, \Delta \eta, \Delta \zeta)$ - векторстолбец искомых параметров, $\mathbf{\epsilon}$ - вектор - столбец случайных ошибок наблюдений, $\mathbf{Z}(\Delta X, \Delta Y)$ - вектор - столбец наблюдений.

Оценка искомых параметров $\hat{\theta}(\Delta \hat{\xi}, \Delta \hat{\eta}, \Delta \hat{\zeta})$ представляет:

$$\widehat{\boldsymbol{\theta}} = (\mathbf{A}^T \mathbf{P} \mathbf{A})^{-1} (\mathbf{A}^T \mathbf{P} \mathbf{Z}),$$
 (3.3.4)

а их ошибки определяются с помощью ковариационной матрицы ошибок неизвестных

$$\mathbf{D}(\hat{\boldsymbol{\theta}}) = \frac{\mathbf{V}^T \mathbf{P} \mathbf{V}}{2m - 3} (\mathbf{A}^T \mathbf{P} \mathbf{A})^{-1}, \quad (3.3.5)$$

где V - вектор остаточных уклонений.

Модель (3.3.4) является ортогональной, но ее можно представить и как приближенную не ортогональную систему в виде алгебраического полинома первой степени P_1 , Таким образом, достоверность построенной модели можно исследовать на основе сравнения ее с результатами, полученными по модели (3.3.4) в виде P_1 .

Для пар каталогов (КСК-1162, ACIC), (КСК-1162, AMS), (КСК-1162, ARTHUR), (KCK-1162, Baldwin), (KCK-1162, Goloseevo-1), (KCK-1162, (КСК-1162, KIEV), Goloseevo-2). (KCK-1162,MILLS-2), (КСК-1162, SCHRUTKA-1), (KCK-1162, SCHRUTKA-2), (KCK-1162, Valeev), (KCK-1162, ULCN 2005) нами получены значения матриц ориентации A и векторов смещения S₀. В связи с этим каждый из каталогов был переведен в систему Казань-1162. В таблице 3.3.1 приведены значения для каталогов перечисленных выше, значения элементов матриц ориентации А, векторов смещения S₀ и количество общих точек. Для перевода применялся численный метод по общим точкам [28].

Каталог трансформированных координат лунных объектов в динамической системе координат был получен при реализации задачи прецизионного сгущения и расширения фундаментальной селеноцентрической сети Казань-1162 на видимую и обратную стороны Луны.

Название каталога	Матрица поворота	Вектор смещения	Количество общих точек
ACIC	1.000000 0.000197 -0.000078 -0.000197 1.000000 -0.000561 0.000078 0.000561 1.000000	-0.000173 -0.000198 -0.001176	64
AMS	1.000000 0.000057 -0.000214 -0.000057 1.000000 -0.000296 0.000214 0.000296 1.000000	-0.000003 -0.000347 -0.000820	52
ARTHUR	1.000000 -0.000044 -0.000124 0.000044 1.000000 -0.000558 0.000124 0.000558 1.000000	-0.000125 -0.000254 -0.001400	14
Голосеево-1	1,000000 0,000266 -0,000239 -0,000266 1,000000 -0,000452 0,000239 0,000452 1,000000	-0,000115 -0,000164 -0,000645	39
Голосеево-2	1.000000 0.000178 -0.000531 -0.000178 1.000000 -0.000707 0.000531 0.000707 1.000000	0.000123 -0.000213 -0.000404	44
Киев	1.000000 -0.000027 -0.000503 0.000027 1.000000 -0.000215 0.000503 0.000215 1.000000	-0.000010 0.000031 -0.000038	659
MILLS-2	1.000000 -0.000010 -0.000051 0.000010 1.000000 -0.000509 0.000051 0.000509 1.000000	-0.000200 -0.000256 -0.001119	93
SCHRUTKA-1	1.000000 0.000162 -0.000196 -0.000162 1.000000 -0.000300 0.000196 0.000300 1.000000	-0.000172 -0.000361 -0.001280	33
SCHRUTKA-2	1.000000 -0.000061 -0.000118 0.000061 1.000000 -0.000469 0.000118 0.000469 1.000000	-0.000152 -0.000242 -0.000883	35
Valeev	1.000000 -0.000027 -0.000503	-0.000010	21

Таблица 3.3.1 Параметры каталогов в системе опорной сети «Казань-1162»

	0.000027 1.000000 -0.000215 0.000503 0.000215 1.000000	0.000031 -0.000038	
Baldwin	1.000000 -0.000334 0.000002 0.000334 1.000000 -0.000592 -0.000002 0.000592 1.000000	0.000187 -0.000013 -0.000259	23
ULCN	1.000000.000160.00005-0.000161.00000-0.00007-0.000050.000071.00000	0.00002 0.00005 0.00005	400

В ходе решения поставленной задачи был осуществлен анализ на возможность применения адаптивного регрессионного моделирования к решению задачи преобразования координат на основе использования координатного обеспечения общих лунных объектов. Было установлено, что нахождение достоверных оценок параметров И систем модели преобразования координат возможно С применением адаптивного [28]. регрессионного моделирования Адаптивное регрессионное моделирование, основанное на методе структурно-параметрической идентификации адекватной модели преобразования координат, возможно, использовать целью интерполяции (сгущения) И экстраполяции С (расширения) опорной селеноцентрической сети. Система моделирования координатных систем МКС позволяет осуществлять отождествления общих объектов в автоматизированном режиме, а также получать координаты Казань-1162 объектов рассматриваемого каталога В системе ДЛЯ аппроксимирующих преобразований при дополнительном применении пакета СПОР. Так же были получены параметры, которые представляют собой данные о диапазоне расхождений координат для исходной и редуцированной версий каталогов, причем полученных в отличных системах отсчета координат.

В Таблицах 1-13 Приложения приведены данные, полученные при расширении каталога «Казань -1162». Данные размещены в восьми столбцах, и содержат в себе следующую информацию: порядковый номер точки в каталоге, ξ в единицах среднего радиуса 1738.1 км, η в единицах среднего

радиуса 1738.1 км, ζ в единицах среднего радиуса 1738.1 км, долгота $\lambda \pm 180^{\circ}$, широта $\beta \pm 90^{\circ}$, радиус-вектор кратера, отсчитываемый от центра масс Луны R, название каталога с примечанием. Полная версия каталога приводится в работе [26].

Были использованы формулы перевода сферических координат в прямоугольные координаты:

$$\xi = R \sin(\lambda) \cos(\beta)$$
$$\eta = R \sin(\beta)$$
$$\zeta = R \cos(\lambda) \cos(\beta)$$

Также были использованы формулы перевода прямоугольных координат в сферические координаты:

$$\begin{split} \lambda &= \frac{180}{\pi} \operatorname{arctg}(\frac{\xi}{\zeta}), \zeta > 0\\ \lambda &= \frac{180}{\pi} (\pi + \operatorname{arctg}(\frac{\xi}{\zeta})), \zeta \leq 0\\ \beta &= \frac{180}{\pi} \operatorname{arctg} \frac{\eta}{\sqrt{\xi^2 + \zeta^2}}\\ R &= R_0 \sqrt{\xi^2 + \eta^2 + \zeta^2}, \, \text{где} \, R_0 = 1738.1 \, \text{км.} \end{split}$$

3.4 Исследование фундаментального каталога опорных точек на лунной поверхности

Выполнить сравнение каталога координат опорных точек лунной поверхности полученного после трансформации каталога с данными каталога Казань-1162 можно следующими способами:

Метод сравнительного анализа [36], для двух сравниваемых каталогов можно записать [38]:

$$\begin{pmatrix} A & B & C \\ E & F & G \\ M & N & L \end{pmatrix} \begin{pmatrix} \xi_i^{Kaz} \\ \eta_i^{Kaz} \\ \zeta_i^{Kaz} \end{pmatrix} + \begin{pmatrix} D \\ H \\ K \end{pmatrix} = \begin{pmatrix} \Delta \xi_i \\ \Delta \eta_i \\ \Delta \zeta_i \end{pmatrix}, \quad (3.4.1)$$

где A, F, L - коэффициенты, характеризуют различие масштабов двух систем по осям ξ, η, ζ [48, 50] и, по существу, являются масштабными множителями по координатам ξ, η, ζ в сравниваемых каталогах:

$$\xi_{Kat} = (1-A)\xi_{Kaz}, \eta_{Kat} = (1-A)\eta_{Kaz}, \zeta_{Kat} = (1-A)\zeta_{Kaz}.$$
(3.4.2)

Коэффициенты *B*,*C*,*E*,*G*,*M*,*N* характеризуют отличие ориентации осей систем координат сравниваемых каталогов. *D*,*H*,*K* - свободные члены, обязанные своими не нулевыми значениями несовпадению начал селенодезических систем. $\xi_i^{Kat}, \eta_i^{Kat}, \zeta_i^{Kat}$ - (*i*=1,2,...*m*), где *m* число сравниваемых точек, а $\xi_i^{Kat}, \eta_i^{Kat}, \zeta_i^{Kat}$ координаты общих сравниваемых точек, $\Delta \xi_i, \Delta \eta_i, \Delta \zeta_i$ представляют собой разности вида:

$$\Delta \xi_i = \xi_i^{Kat} - \xi_i^{Kaz}, \Delta \eta_i = \eta_i^{Kat} - \eta_i^{Kaz} \Delta \zeta_i = \zeta_i^{Kat} - \zeta_i^{Kaz}, \qquad (1.4.3)$$

где ξ_i^{Kat} , η_i^{Kat} , ζ_i^{Kat} - координаты кратеров, входящих в каталоги, которые сравниваются с каталогом Казань-1162, последние обозначены как ξ_i^{Kaz} , η_i^{Kaz} , ζ_i^{Kaz} . Индекс *i* соответствует номеру сравниваемого кратера.

В связи с тем, что каталог Казань – 1162 и трансформированные каталоги Киев 4900 и ULCN 2005 содержат наибольшее количество общих точек. Сравнение выполнялось для указанных трех каталогов.

Для упомянутых выше каталогов были составлены условные уравнения вида (3.4.1), которые решались методом наименьших квадратов. Полученные результаты приведены в Таблице 3.4.1. Значения μ, ν, π , входящие в Таблицу, являются углами поворота сравниваемых систем в соответствующих координатных плоскостях $\xi O\eta, \xi O\zeta, \eta O\zeta$, где O начало координат. μ, ν, π определяются по следующим формулам [38]:

$$\pi = \frac{N-G}{2}, \nu = \frac{C-M}{2}, \mu = \frac{E-B}{2}.$$
(3.4.4)

Значения *μ*,*ν*,*π* из выражений (3.4.4) получаются в радианах, а в Таблице 3.4.1 они были переведены в секунды дуги.

В Таблице 3.4.1 коэффициенты B, C, E, G, M, N безразмерные и умножены на 10^5 , а D, H, K выражены в долях радиуса Луны и умножены на 10^5 .

При анализе Таблицы 3.4.1 видно, что координаты ξ , ζ и η масштаб у всех сравниваемых каталогов близки. Нуль - пункты в пределах ошибок в плановых координатах имееют достаточно хорошее согласие с каталогом Казань - 1162. В плоскости $\xi O\eta$ (угол μ) система координат сравниваемых каталогов также хорошо ориентирована относительно сети Казань - 1161, но более близкое совпадение наблюдается относительно каталога ULCN. В плоскости $\xi O\zeta$ (угол ν) наблюдается также хорошее согласие. В плоскости $\eta O\zeta$ (угол π) отличие ориентации только в пределах ошибок измерений.

Таблица 3.4.1 - Результаты исследования трансформированных каталогов Киев 4900 и ULCN 2005 с каталогом «Казань1162»

Каталоги	Α	В	С	D	π
	E	F	G	Н	V
	М	Ν	L	K	μ
ULCN 2005	8± 10	14 ± 15	48±19	-11 ± 18	74"
	13 ± 15	20 ± 14	35±17	-27 ± 20	18
	43±29	55±35	32±25	-38 ± 37	-32
Киев 4900	17±18	38± 25	82±15	27± 19	16"
	24 ± 15	$29\pm~25$	18 ± 14	85 ± 79	28
	60 ± 41	31± 42	-37 ± 55	47± 53	30

Основной вывод при анализе выбранных сравниваемых каталогов состоит в том, что в пределах точности наблюдений оси трансформированных каталогов ориентированы относительно каталога Казань-1162 одинаковым образом.

Глава 4. Создание модели макрофигуры лунного диска

7.1 Методы построения моделей макрофигуры Луны

Создание моделей макрофигуры Луны, несмотря на точность представления самого физического рельефа, получаемого на основе данных космических миссий, до настоящего времени остается не решенной задачей из-за проблемы с определением положения координатной сетки и, соответственно, неточности значений селеноцентрических координат этих точек [143, 144].

Основным методом, использующимся для исследования лунного макрорельефа, является числено-аналитический метод, заключающийся в разложении каталожных данных в гармонические ряды по сферическим функциям. При этом целесообразно использовать методы регрессионного анализа [35]. Из статистических методов регрессионный анализ наиболее часто используется для решения задач, связанных c обработкой Таким образом, экспериментальных данных. регрессионный анализ позволяет на основе разноплановых наблюдений строить математические модели. Само моделирование подразумевает создание соответствующих взаимосвязей между наблюдаемыми параметрических процессами И соответствующими им параметрами. Оснговные три аспекта характеризуют линейный регрессионный анализ [4], [61]:

- представление данных наблюдений на основе математических методов;

- создание моделей, характеризующих в наибольшей степени наблюдаемый процесс;

- нахождение искомых неизвестных в математической модели с использованием метода наименьших квадратов;

- нахождение и выборка наиболее достоверной модели на основе анализа вычисляемых параметров.

Основная модель регрессионного анализа представляется в виде:

$$\mathbf{V} = \mathbf{R}\alpha + \varepsilon, \tag{4.1.1}$$

где V - векторная матрица наблюдений, имеющая размер (*i*×1), где *i* число наблюдений, **R** - матрица регрессии, служащая для связи параметров модели и имеющая размер (*n*×*p*), которая содержит один столбец с величинами $r_{10} = r_{20} = ... = 1$ и величины r_{ij} соответствующие *i* наблюдениям (*i...n*) над параметрами уравнения регрессии r_j (*j*=1,...,*p*-1), где *p* количество таких параметров; α вектор, характеризующий размерность (*p*×1) искомых неизвестных параметров α_j (*j*=0,...,*p*-1), которые необходимо определить, ε представляет матрицу ошибок модели (*n*×1).

В работе [35] рассматриваются основные подходы к методологии регрессионного анализа. Выбор оптимальной модели представляет собой основную задачу, и при определении вида модели часто решающую роль играют объективные факторы. Модель всегда отражает исследуемый процесс с некоторым приближением и никогда не бывает его точной копией, вследствие того, что обычно существуют некоторые параметры, которые могут оказать определенное воздействие на процесс оценивания искомых величин, но при этом в процессе наблюдений не измеряются. Часть из них имеет систематический характер и в силу этого может с течением времени вызвать изменения коэффициентов модели. Другая же часть меняется случайным образом, подчиняясь некоторому закону распределения. В силу их действия повторные опыты при одних и тех же значениях факторов будут давать различные значения оцениваемой переменной. Модель не может точно учесть влияние случайных возмущений в каждом отдельном измерении, она лишь показывает некоторые усредненные характеристики. Следовательно, нет оснований говорить об "истинной" модели, но лишь о степени ее адекватности. Модель (4.1.1) построена для случая линейной регрессии и имеет неопределенную в полной мере структуированность, которая заключается как в размерности и составляющих элементов системы,

так и входящих параметров - велличинам α_i матрицы α. В данном случае задача нахождения искомых параметров состоит в определении на основе данных наблюдений достоверных значений α_i , соответственно задача определения структуры модели сводится к выводу наиболее адекватной Основным данной модели структуированности. этапом линейного регрессионного анализа является нахождение α_i ПО результатам определенных наблюдений $v_i, r_{i0}, ..., r_{p-1}$. Величины α_i являются случайными величинами, основными числовыми характеристиками которой будет определенное математическое ожидание $M(\alpha_i)$ и дисперсия $D(\alpha_i)$. Нахождение числовых характеристик $M(\alpha_i)$ и $D(\alpha_i)$ нахождения искомого параметра является основной целью параметрического оценивания и, следовательно, при наличии ряда методов оценивания возникает проблема выбора такого из них, который обеспечивает свойства «оптимального» или «наилучшейго линейного» нахождения параметров модели. Оптимальный подход к нахождению параметров используемой нами регрессионной модели предполагает применение первоначальной структуры модели в виде (4.1.1), нахождение искомых неизвестных α_i с использованием метода наименьших квадратов и определение структуры наиболее достоверной модели.

Важным этапом при анализе исходной модели является степень ее наблюденным значениям. Анализ соответствия соответствия модели наблюдениям является одним из главных статистических условий для регрессионного анализа Использование на практике построенной модели должно наиболее полно удовлетворять соответствию теоретической и реальной основе для изучаемого объекта. При нахождении структуры построенной модели одним из ведущих критериев является ее простота и наименьшее количество входящих в нее переменных. То есть критерий выбора структуры модели заключается в стремлении создать наиболее простую интерпретацию реальности c наименьшим количеством переменных, то есть создать более простую систему с ограниченным

количеством переменных параметров и, соответственно, с ограниченным количеством связей между этими параметрами. Такой подход носит название принцип экономичности модели. Сокращение числа параметров модели упрощает с одной стороны процесс нахождения искомых параметров, а с другой строны дает возможность использования данной модели для решения других различных задач.

Для этих целей вводятся так называемые статистические меры соответствия, которые характеризуются мерой расхождения между наблюденными значениями и предполагаемыми. Соответственно меры делятся на внешние в случае стохастических моделей и внутренние в случае редуцированных моделей.

4.2 Современные модели макрофигуры Луны

Впервые гармонический анализ был использован К. Гудасом [104], который выполнил разложение по сферическим функциям высотных данных рельефа до 8 – го порядка. Принятый в обработку порядок гармоник определялся количеством и точностью наблюдательных данных. Анализ результатов разложений показал, что с увеличением порядка гармоник средняя квадратичная ошибка вычислений уменьшается. Также было принято за основу, что точность измерения высот является единственным источником ошибок, а методы вычислений, использованные при получении коэффициентов гармоник, не вносят дополнительных ошибок. Метод наименьших квадратов был использован для определения коэффициентов разложений. Вследствие отсутствия информации о рельефе обратной стороны Луны, К. Гудасу пришлось предположить, что на видимой и обратной сторонах небесного тела рельеф симметричный, что исказило результы описания глобального рельефа.

В процессе первоначального исследования Луны использование только наземных наблюдений давало ошибку определения высотточек поверхности

порядка ±100 метров, что, соответственно, негативно сказывалось на точности разложения и самого рельефа. При этом данные о рельефе обратной стороны отсутствовали, что приводило к значительным ошибкам, так как даже положение начала системы координат определить достоверно не представлялось возможным. С началом космической эры картина стала меняться. Удалось получить не только фотографические снимки всей исследуемой поверхности Луны, но и дополнить их данными лазерной альтиметрии. В результате были получены модели лунной макрофигуры на основе метода разложения селенографических наблюдательных данных в ряды по сферическим функциям. Б. Билс и А. Феррари [85] в своих использовали 3300 исследованиях измерений высот, определенных "Apollo" 5800 наземными методами, 1400 фотографий миссии И альтиметрических наблюдений с целью построения модели макрофигуры Луны 12 порядка. В результате ими была создана модель рельефа с точностью представленных данных ± 1 км и покрывающую область лунной поверхности, лежащую между отметками 45° северной и южной широты.

Особо следует отметить цикл отечественных авторов, которые внесли весомый разработку гармонического вклад В методов анализа селенографических данных. На основе анализа абсолютных высот объектов на обратной стороне западного полушария Луны, полученных с борта космических миссий "Зонд - 6, - 8", причем следует сказать, что привлечение данных "Зонд - 6, - 8" позволило повысить точность разложения в областях, соответствующих южной части западного полушария, полярным областям и краевой зоне Луны; гипсометрической карты видимой стороны Луны, покрывающей область на лунной поверхности ±70° по широте и долготе, которая была создана по данным опорного каталога Милза; каталога высот краевой зоны, построенной в Голосеевской обсерватории и данных альтиметрии миссии "Apollo - 15, - 16" Н.А. Чуйковой [67], [68] был разработан метод и выполнено разложение рельефа до 8 - го порядка гармоник. Привлечение данных "Зонд - 6, - 8" позволило повысить точность

разложения, в частности, в областях, соответствующих южной части западного полушария, полярным областям и краевой зоне. В данном исследовании совместно с разложениями по сферическим функциям впервые было произведено разложение рельефа по выборочным функциям. Продолжением этих исследований следует считать работы [33], [34], [65] и каталога "Миллз 3" [118], было выполнено разложение рельефа до 10 - го порядка и высоты обратной стороны Луны получены по аномалиям силы тяжести.

Интересные исследования в области методологии гармонического анализа лунной топографии были выполнены В.С. Кислюком [36], который проанализировал два метода построения мегарельефа Луны: картографический и метод сферического гармонического анализа. Бланковая карта Луны использовалась в качестве селенографической основы. С целью построения гипсометрической карты в работе использовались селенодезические координаты 2390 опорных точек, входящих в каталог "Киев - 4900", и абсолютные высоты отдельных валов крупных кратеров и пиков хребтов, которые были измерены на американских картах видимого Луны. При создании гипсометрической полушария карты лунная поверхность была разделена на участки размером 10°х10°, на которых средние значения высот были получены сглаживанием с использованием Для методом скользящего среднего. математического представления глобального мегарельефа Луны лунная поверхность была разделена на 56 участков указанного размера, симметрично расположенных относительно экватора и нулевого меридиана, что позволяло на основании свойств ортогональности сферических функций получить некоррелированные значения гармонических членов разложения. С учетом весов были найдены средние уровни каждого из 56 участков как средние взвешенные значения высот точек, попадающих на данный участок. Разложение по сферическим функциям было выполнено до 5-й степени, при этом отдельно исследовались материковые и морские области. В результате, построенные карты оказались

достаточно точными (±0.18 - 0.30 км по высоте) и хорошо согласуются с данными гипсометрической карты, построенной Биллзом и Феррари методом гармонического анализа данных лазерной альтиметрии. На основе описанного подхода были найдены размеры трехосного эллипсоида, аппроксимирующего геометрическую фигуру Луны, определены параметры геометрической фигуры Луны и определено смещение центра фигуры относительно центра масс Луны.

В работе [12], выполненной С.Г. Валеевым, на основе разложения глобального рельефа Луны в ряд по сферическим функциям до 8 - го порядка с использованием данных гипсометрических карт Биллза, Феррари и Чуйковой, которые покрывают 60% лунной поверхности, были определены значения селенографических координат 261 объектов, расположенных в либрационной зоне и на обратной стороне Луны. Каталог 4900 лунных объектов [30] использовался как опорная селенодезическая сеть. Здесь, гармонического анализа, области, впервые В практике В которых отсутствовали данные, заполнялась с помощью ковариционной функции в предположении однородности и изотропности вариаций топографии [12]. Впервые в таких исследованиях при нахождениии искомых параметров был использован метод регрессионного моделирования. С использованием регрессионного подхода была построена наиболее достоверная модель поверхности Луны с учетом коэффициентов разложения 8-го порядка, и согласно критерия Стьюдента содержащие исключительно стохастически значимые гармонические коэффициенты. Исследование полученных в работе [12] моделей выполнялся на основе внутренних стохастических условий и в процессе анализа было выявлено увеличение точности полученных параметров разложении и высокая детализация построенной модели. В данной работе также была построена В проекции Мольвейде гипсометрическая карта достаточно близкая к данным оптимального разложения. работе [12] получены важные результаты, которые В использованы в наших исследованиях:

1. Как правило, в разложениях присутствуют параметры, коррелирующие друг с другом, что приводит к ненадежному определению соответствующих коэффициентов гармоник;

2. Регрессионный анализ гармоник позволяет ограничиться в разложении меньшим числом членов ряда;

3. Статистическая оценка разложения по сферическим функциям может быть использована как мера качества, дающая представление о прогностической ценности модели и позволяющие дискриминировать конкурирующие описания.

В настоящее время наиболее подробной и полной из всех построенных ранее является модель разложения рельефа Луны в ряд по сферическим функциям 70 порядка, полученная в Лаборатории ракетного движения (JPL) USA) на основе данных миссии "Clementine" [138]. Сложность построения подробных моделей рельефа Луны обусловлена в первую очередь большим числом входящих в разложение коэффициентов. Модель базируется на сфероиде со сжатием 1/3234.93 и средним радиусом 1738 км и покрывает зону, заключенную между 75° северной и южной. При создании модели 70 го порядка разложения рельефа Луны коэффициенты гармоник были получены численного интегрирования cdepe. методом ПО лунной Полученная селенографическая модель наиболее достоверно из всех до нее созданных, дает значения поверхностных высот Луны, это объясняется тем фактом, что различия между информацией, полученной по программе "Clementine", и предыдущими исследованиями, обусловливается тем, что ранее измерения Луны были ограничены экваториальными областями при миссии "Apollo", а использовании ланными также малыми селенографическими ошибками высот порядка ±10 метров по сравнению с предыдущими значениями ±0.5 - 1 км.

Однако, в заключение данного параграфа можно сделать следующий вывод, что несмотря на точность представленного рельефа на современных моделях физической поверхности Луны, селенодезическая привязка точек по

всем трем осям остается достаточно неопределенной. Поэтому современной актуальной задачей является определение именно этой базисной координатной системы отсчета.

4.3 Построение модели макрофигуры Луны по данным каталога селеноцентрических опорных точек

Новые данные о рельефе видимой стороны лунной поверхности были получены при анализе радиусов-векторов (абсолютных высот) 282215 точек селенодезического каталога селеноцентрических опорных точек (КСОТ), полученного в настоящей работе. Этот каталог построен методом трансформации координат в фундаментальную динамическую систему координат, или другими словами, в систему координат, центр которой лежит в центре масс Луны, а координатные оси направлены вдоль главных осей инерции. Таким образом, положения объектов в этом каталоге реализует небесную систему координат.

При разработке метода построения регрессионных моделей мегарельефа гравитационных полей небесных И тел возникает необходимость в наиболее достоверной системе анализа данных, которая характеризуется решением многопараметрической задачи оптимизации путем последовательных приближений к нарушению условий метода наименьших квадратов [35]. Помимо практической реализации этого весьма трудного с программной точки зрения подхода, актуальной является задача разработки метода поиска наиболее достоверных регрессионных моделей на основе некоторого количества различных стохастических подходов. Даже неполное решение только для ограниченного количества таких условий для метода наименьших квадратов, но являющихся основными для структуризации модели, может позволить определить наилучшие линейные параметры для искомых величин и осуществить прогнозирование для случайных ошибок измерений, которые не могут быть исключены.

Для решения задач построения моделей макрофигуры Луны мы, как указывалось выше, использовали метод, основанный на регрессионном моделировании. С этой целью совместно с коллегами из УлГТУ для решения нашей задачи была произведена модификация программного комплекса Автоматизированная система научных исследований (АСНИ+) [14], [15]. Относительно последней необходимо сказать следующее. В настоящее время существует ряд специализированных программных пакетов (СПП), созданных отечественными И зарубежными коллективами И ориентированных на обработку данных методами математической статистики. Однако, эти СПП не приспособлены для решения тех задач селенодезии, которые решаются в настоящей работе. АСНИ+ устроена на модульном принципе, и эти компоненты программного комплекса позволяют проводить исследования во всех интересующих нас областях селенодезии. В данном случае используется системный подход, который приводит к системам обработки данных, позволяющим автоматизировать как процесс обработки данных, так и управление этим процессом. Также в процессе построения модели макрофигуры Луны совместно с АСНИ+ была произведена попытка использования другого программного пакета СПОР (Система Поиска Оптимальных Регрессий) [17], так как в СПОР реализован подход регрессионного моделирования и эффективность этой системы доказана при обработке астрофотографий. Однако, как было подтверждено особенность данных по мегарельефу и гравитационному полю еще раз, Луны (размерность и структура) и методов их преобразования для применения регрессионного подхода не позволяет использовать данный программный продукт [35]. Таким образом, обработке была при использована только автоматизированная система АСНИ [14], [15], которая представляет собой программный пакет специальных модулей, предназначенных для выполнения процедур регрессионного моделирования и направленных для анализа процессов, происходящтх в астрономичесеских и геодезических системах. В частности данный пакет позволяет проводить

исследования топографии Луны и ее гравитационного поля [35]. Основные возможности данного программного продукта заключаются в возможности создания стохастичеческих моделей И затем нахождения искомых параметров с учетом прогнозирования, обратной связью со значениями возможностью полномаштабного полученных величин, и управления вычислительным процессом. Данный программный комплекс был создан по причине специфических подходов к решению поставленных задач, которые требовали большого количества вариантов решений и использованию различных методов определения ошибок неизвестных. Также важным является вопрос и о сопоставлении остаточных членов в конечном нахождении параметров модели с основными предположениями метода наименьших квадратов. В основном режиме моделирования данная система позволяет осуществлять следующие вычисления [35]:

- построение моделей в виде разложения по сферическим функциям;
- реализация методов структурной идентификации;
- автоматизация процесса обработки при различных порядках разложения;
- построение и анализ графиков "остаток-отклик", "остаток-регрессор" с целью проверки выполнения предположений регрессионного анализа;
- проверка выполнения предположения о нормальном распределении стандартизованных остатков;
- определение автокорреляции остатков по критерию Дарбина-Уотсона;
- поддержка дружественного предметно ориентированного интерфейса с пользователем.

Программные модули, реализованные в АСНИ, обеспечивают решение избыточных (переопределенных) линейных нормальных И систем алгебраических уравнений. Решение последних осуществляется на основе метода наименьших квадратов. В кажестве выходных данных могут быть значения искомых неизвестных И ИХ ошибки, значения элементов корреляционной матрицы, внутренние И внешние меры качества,

используемые для определения достоверности и получения рекомендаций для структуирования модели. Чаще всего программа содержит ту или иную процедуру поиска наиболее достоверной структуированности модели. Имеется возможность использования шагового регрессионного анализа, который используется для получения модели по меньшему числу наблюдений n, чем число коэффициентов p. Это возможно, поскольку члены включаются в модель последовательно, один за другим, и процедура может закончиться раньше, нежели возникнет избыточность.

Кратко сам метод И математический аппарат построения селенографических моделей рельефа заключается в следующем. Модель Луны можно построить, используя разложения функции мегарельефа $R(\lambda_i, \varphi_i)$ точек вариаций радиусов-векторов лунной поверхности с известными координатами в ряд по сферическим функциям в виде

$$R(\lambda_i, \varphi_i) = F(\overline{C}_{nm}, \overline{S}_{nm}, \overline{P}_{nm}), \qquad (4.2.1)$$

где λ_i, φ_i - известные селенографические координаты лунных объектов; $\overline{C}_{nm}, \overline{S}_{nm}$ - стандартизованные коэффициенты сферических гармоник; \overline{P}_{nm} - стандартизованные присоединенные функции Лежандра.

В результате на основе данных каталога КСОТ была построена модель до восьмой степени разложения (4.2.1). При этом были выполнены следующие этапы создания модели. Был произведен регрессионный анализ моделей рельефа Луны для различных степеней разложения и определено, что увеличение в данном случае степени разложения не играет заметной роли, далее были проанализированы оптимальные структуры для данной модели, и в итоге исследовалось влияния переопределенности структуры модели на значения искомых параметров.

Поиск искомых неизвестных и анализ полученной модели (4.2.1) выполнялась с использованием метода наименьших квадратов. Пошаговая регрессия использовалась с целью разложения данных мегарельефа по сферическим функциям. Все построенные модели включали только

значимые элементы. Было выполнено исследование для нахождения наиболее достовыерной степени разложений рельефа. Было установлено, что степень разложения восемнадцатого порядка являются наиболее приемлемой для данного количества наблюдений.

С целью оценки достоверности построенной модели было проведено сравнения каталога "КСОТ" с данными, полученными по программе Clementine.

Одним из методов исследования моделей макрорельефа Луны, построенного на основании данных разных селенографических системам, для анализа их сопостовимости и достоверности, служит метод сравнения изогибс данных моделей топографической информации. При этом основная уровенная поверхность отсчета высот задается каталогом Казань-1162.

Следует отметить, что на данное время существует только одна модель макрорельефа лунной поверхности, построенная в JPL USA на основе гармонического анализа и содержащая коэффициенты до 70-го порядка [138] и охватывающая область на лунной поверхности, ограниченную 75⁰ северной и южной широты. Вместе с тем, для наших исследований вполне достаточно оказалось использовать модель макрорельефа лунной поверхности 40-го порядка, построенную в УлГТУ [16] и включающую 72548 высот.

Для анализа нами были использованы изогибсы сечений макрофигуры Луны, полученные в предыдущей работе [50], и построенные по материалам миссии Clementine [137], каталогов Казань-1162 [46], Киев [30], и модель, построенная на основании данных полученных в настоящей работе - каталога "КСОТ". Модели строились до пятого порядка разложений по сферическим функциям. Были проанализированы изогибсы для значений селенографической долготы (λ =40⁰, 20⁰, 0⁰, -20⁰, -40⁰) с шагом 20⁰ по широте. На рисунке 4.2.1 приводятся сечения лунного макрорельефа для четырех селенографических систем для долготы λ = -20⁰. Здесь по оси ординат даны

селенографические широты и по оси абцисс высоты изогибс по отношению к базовой высоте (1738км).

На основе исследования изогибс, построенных для селенографических долгот $\lambda = 40^{\circ}$; 20° ; 0° ; -20° ; -40° можно заключить, что:

1. Как и в предыдущих исследованиях [140], усредненный уровень поверхности Луны на юге выше уровня северного полушария. Разница высотных данных между этими областями Луны составляет порядка 0.5-1.0 км;

2. В целом, формы гипсометрических кривых изогибс "КСОТ", Казань-1162 и миссии Clementine близки, а вариации изогибс каталога Голосеева имеют более значительные отличия от упомянутых каталогов.

Рисунок 4.2.1 Сравнение сечений ранее постоенных в работе [50] моделей гипсометрической фигуры Луны по данным миссии Clementine (линия 3), каталогов Казань-1162 (линия 4), Киев (линия 2) и каталога КСОТ (линия 1). По оси абсцисс отложены высоты в км, по оси ординат селенографические

широты в градусах, кривые приведены для селенографической долглты $\lambda = -20^{0}$.

3. Для случая значения селенографической долглты $\lambda = -20^{\circ}$ мы провели корреляционный анализ кривых гипсометрических сечений по следующему алгоритму: поставленная задача заключалась в определении корреляционной зависимости между высотными данными, представленными на риунке 4.2.1. Для этой цели были вычислены высотные значения одной исследуемой кривой x_i в зависимости от селенографической широты и другой y_i . Найдены их средние значения $\overline{x}, \overline{y}$ по формулам:

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_i,$$

И посчитаны коэффициенты корреляции *г* согласно выражению:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}},$$
(4.2.2)

Результаты вычислений приведены в таблице 4.3.1

Таблица 4.3.1 Значения коэффициентов корреляции для гипсометрических кривых для селенографической долглты λ= -20⁰

N	Пары исследуемых	Коэффициент
п/п	гипсометрических кривых для	корреляции
	селенографической долглты λ = -20 ⁰	
1	КСОТ - Киев	0.42
2	KCOT - Clementine	0.65
3	КСОТ - Казань-1162	-0.81
4	Киев - Clementine	0.58
5	Киев - Казань-1162	-0.45
6	Clementine - Казань-1162	-0.87

Как видно из таблицы, корреляция во всех случаях не сильная, но имеет наибольшее знаяение в случае 2, что объясняется следующим обстоятельством. Большинство точек в каталоге КСОТ трансформированы из каталога ULCN, а последний искусственно исправлялся за поправку высоты именно по топографическим данным миссии Clementine и последующим космическим миссиям. Этим же фактом объясняется определенная положительная корреляция и в случаях 1 и 4. Если же говорить об среднеквадратическом отклонении, которое можно вычислить по формуле:

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2}$$

где *п* количество измерений отклонения двух кривых, то для случая КСОТ – Clementine это отклонение равно 0,9 км, а для случая Clementine - Казань-1162 1,7 км, из чего можно сделать вывод, что каталог КСОТ для лолготы λ = -20⁰ по высотным данным оказался даже более близким к системе данных миссии Clementine, чем каталог Казань-1162.

4. Сравнение трех гипсометрических кривых для каталогов "КСОТ", Казань-1162 и миссии Clementine также подтверждает ранее сделанное заключение о том, что имеется понижение средней высоты макрорельефа по значениям, полученным в [105] по сравнению со значениями, приведенными в работе [30] в северном полушарии Луны.

ЗАКЛЮЧЕНИЕ

Для достижения определенных в диссертационной работе целей: выполнение теоретических и практических работ по исследованию современных селенографических каталогов относительно динамической системы координат, разработка метода анализа относительного положения геометрического центра Луны относительно центра масс и его реализация на практике, создание метода построения абсолютного каталога в краевой зоне Луны, построение абсолютного каталога в краевой зоне Луны, создание опорного каталога объектов на поверхности Луны в небесной системе координат, моделирование макрофигуры лунного диска, был выполнен необходимый объем работ, отраженных в тексте диссертации.

При выполнении настоящей работы были выполнены следующие исследования, по результатам которых сделаны соответствующие выводы.

В рамках анализа динамической и геометрической фигур Луны были обозначены основные задачи современного этапа лунной астрометрии, важнейшими сделан вывод, задачами являются построение ЧТО селеноцентрических динамических опорных сетей, создание ЛУННЫХ топоцентрических и гравиметрических моделей, установление взаимного положения центра фигуры и центра масс Луны, задание систем отсчета селенографических координат для навигационного ориентирования и определения поверхностей отсчета высот для картографирования лунной поверхности. Относительно последней задачи необходимо отметить, что все современные топографические модели, построенные по космическим наблюдениям, неопределенные поверхности отсчета в целом имеют координат, что ведет к снижению точности координат представленных на объектов. Также без них опорного каталога лунных объектов, наилучшим образом исследуемую область поверхности охватывающего невыполнима и задача сгущения и расширения космических навигационных сетей

Был выполнен анализ современных путей решения вопросов лунной селеноографии на основе данных, полученных космическими миссиями. В частности рассмотрены миссии Lunar Orbiter (США), Apollo (США), Ranger (CIIIA), Galileo, Clementine (CIIIA), Lunar Prospector (CIIIA), SMART-1 (Европа), SELENE (Япония), Chang'E-1 (Китай), Chandrayaan-1 (Индия), Lunar Reconnaissance Orbiter (США), КАGUYA (Япония). Показана необходимость многократной обработки различных наборов космических данных, в силу постоянного улучшения методов обработки и подходов, на основе которых продолжается развитие глобальных селенодезических опорных сетей. Это направление стало особенно важным с появлением селеноцентрических опорных сетей. Также активизируется создание баз данных для глобальных высотных измерений в последующих космических миссиях, что, несомненно, повысит точность опорных селеноцентрических сетей, как это было при исследовании Марса. В итоге был выполнен анализ динамической и геометрической фигуры Луны, который заключался в исследовании систем координат селенографических каталогов и данных космических миссий на основе анализа взаимного положения лунного центра фигуры и ее центра масс. Подчеркнуто, что в настоящее время все данные по лунной топографии можно разделить на два типа. С одной стороны, одни данные полученные на основе лазерного сканирования лунной поверхности с бортов спутников, хорошо описывают лунный рельеф, но не дают значения координат опорных объектов на Луне [23]. Другой тип данных дает точные координаты опорных объектов на основе наблюдений прямой привязки их к звездам, но не описывают с достаточной точностью лунный рельеф [23]. Причем все эти системы имеют разные системы отсчета и ориентацию осей координат. С другой стороны данные, полученные во всех космических миссиях, относятся к квазидинамической системе координат, в которой центром отсчета координат является центр масс Луны, но оси координат не инерции Луны. Большинство совпадают с осями современных селенодезических каталогов также относится к квазидинамической системе

координат, так как у них или центр отсчета координат не совпадает с центром масс Луны, или оси координат не совпадают с осями инерции Луны. Также В настоящее время не существует опорной динамической селеноцентрической системы координат, полученной на основе космических наблюдений и покрывающей достаточную площадь на лунной поверхности. Кроме того, несмотря на точность определения физического рельефа Луны космическими миссиями, поверхность отсчета отметок этого рельефа представляет собой абсолютно неопределенную фигуру. Таким образом, нельзя говорить, что спутниковые топографические карты являются полноценными моделями, имеющими определенную поверхность отсчета топографических С данных. целью исследования достоверности топографических моделей, полученных на основе спутниковых и наземных наблюдений в работе были выполнены следующие исследования: прямое сравнение поверхностей лунного макрорельефа задаваемого спутниковой топографической картой И макрорельефов полученных ИЗ других источников; сравнительный анализ значений положения центра масс относительно центра фигуры Луны для разных источников топографической информации. Для осуществления поставленных целей использовался метод гармонического анализа на основе разложения гипсометрических данных в ряд по сферическим функциям. Для построения моделей использовались следующие источники топографической информации: данные космических миссий "Clementine" и "Кадиуа", данные наземных каталогов Казань-1162, Киев 4900, каталог ГАИШ, данные работы Биллза и Феррари, опорная сеть "ULCN 2005". Для решения систем уравнений для разных источников гипсометрической информации использовалось регрессионное моделирование, В качестве вычислительных схем МНК использовались алгоритмы Гаусса-Жордана и Хаусхолдера. Шумовые гармоники были удалены с помощью пошаговой регрессии. В результате были получены координаты центра фигуры Луны относительно ее центра масс для разных источников топографической информации. Анализ этих данных показал, что

каталог Казань-1162 для видимой стороны Луны, приведенный к центру масс и к главным осям инерции Луны, при совместном использовании объектов вне зоны ее охвата из списка Clementine наилучшим образом согласуется с результатами последних космических миссий. Также было определено, что коррекция первых измерений миссии Clementine, выполненная авторами ULCN 2005, по-видимому, имела отношение к данным на видимой стороне Луны.

Следующим этапом работы стало создание опорной либрационной селеноцентрической сети В зоне Луны, поскольку либрационная зона Луны до сих пор представляет собой достаточно неисследованный В селенодезическом плане район. При анализе современных методов построения селенографическхе моделей либрационной Луны особое внимание было уделено проблеме зоны построения селеноцентрической опорной сети, так как создание такой системы предполагает ее использование при связи и трансформации координат навигационных систем между видимой и обратной стороны Луны. Алгоритм систем разработанного метода построения навигационных опорного селенодезического каталога объектов в либрационной зоне включал следующие позиции: приведение изогипс карт Уоттса с поправками Моррисона к системе карт «Казань» в электронном виде; отождествлению кратеров на картах краевой зоны с использованием Полной карты Луны, созданной ГАИШ МГУ и уточнение их положения по картам космических миссий; далее с использованием программного пакета MAPS были определены уточненные координаты кратеров в системе гайновских координат с использованием динамических карт либрационной зоны, и, в итоге, получены прямоугольные координаты опорных объектов и проведен анализ их точности. Сравнение полученных координат с высотной топографией миссий Clementine и Kaguya показали их хорошее согласие.

Следующий этап настоящей работы был посвящен вопросам построения опорного каталога объектов на поверхности Луны в небесной

координат. Был произведен системе анализ методов построения селенографических каталогов лунных объектов. При этом было отмечено, что современные селенодезические сети не являются однозначно равноточными что относится к различным координатным осям, и с целью устранения этих неточностей можно использовать два подхода: 1) с использованием значимых базисов использовать стереофотограмметрию; 2) Данные, полученных по наземным наблюдениям Луны, И данные, полученные с использованием космических аппаратов для получения совместных решений. Для этих целей был разработан соответствующий работы с селенографическими системами математический аппарат для координат. Рассмотрены взаимосвязи координатных систем С селенодезическими параметрами, используемые в настоящей работе. Были проанализированы системы селенографических и динамических координат, методы их трансформации, основные поправки, которые необходимо учитывать при вычислениях. Было определено, что для видимой стороны есть несколько координатных систем, среди которых несколько каталогов построены в динамической системе координат, это каталоги Казань-1162, созданный на основе совместных наблюдений Луны со звёздами на горизонтальном телескопе, а также построенный аналогичным методом Казань-264. Была поставлена основная каталог задача исследования систематических и случайных ошибок каталога Казань-1162 и сгущение и расширение системы каталога Казань-1162 на видимую, обратную стороны Луны и либрационную зону. С этой целью было модифицировано специальное информационное и программное обеспечение. В итоге в систему каталога Казань-1162 были переведены 12 селенографических каталогов: ACIC, AMS, ARTHUR, Baldwin, Goloseevo-1, Goloseevo-2, MILLS-2, SCHRUTKA-1, SCHRUTKA-2, Киев 4900, ULCN 2005) и каталог на западное полушарие Луны Валеева. Было проведено исследование по использованию поворотных матриц ориентации и векторов смещения, и конечным результатом исследования стало сгущение на видимой стороне опорного

селеноцентрического каталога Казань - 1162 и распространение данной сети на на обратную сторону Луны. Мспользование данного подхода позволил создать систему с осями координат, направленным вдоль осей инерции Луны и центром координат, совпадающим с центром массы Луны. В результате была построена опорная селеноцентрическая сеть, содержащая 282 215 объектов и созданная в динамической системе координат. Было выполнено сравнение полученного после трансформации каталога опорных точек на лунной поверхности с данными каталога Казань-1162. В итоге показано, что в пределах точности наблюдений оси трансформированных каталогов приблизительно одинаково ориентированы относительно каталога Казань 1162. Показано, что селеноцентрическая сводная сеть близка к динамической системе. На основе построенной селеноцентрической сети была создана модель макрофигуры лунного диска. Было определено, что создание моделей макрофигуры Луны несмотря на точность представления самого физического рельефа, получаемого на основе данных космических миссий, до настоящего времени остается не решенной задачей из-за проблемы с размерности координатной определением сетки И, соответственно, неточности отсчетов самих координат модели физической поверхности Луны, и подчеркнуто, что основным методом, использующимся для исследования лунного макрорельефа, является числено - аналитический заключающийся в разложении селенографических данных метод, В гармонические ряды по сферическим функциям. При этом используются методы регрессионного анализа. Новые данные о рельефе видимой стороны лунной поверхности были получены при анализе радиусов-векторов (абсолютных высот) 282215 точек селенодезического каталога селеноцентрических опорных точек (КСОТ), полученного в настоящей работе. В результате на основе данных каталога КСОТ была построена порядка разложений. При этом были модель восьмого выполнены следующие этапы создания модели. Был произведен регрессионный анализ моделей рельефа Луны для различных степеней разложения и определено,
что увеличение степени разложения в данном случае не играет заметной роли. Далее были проанализированы оптимальные структуры для данной модели, ис целью получения влияния переопределенности структуры на значения оценок искомых параметров. Оценка параметров модели выполнялась с использованием метода наименьших квадратов. На основе данных каталога КСОТ была построена модель макрофигуры Луны. В дальнейшем она была представлена в виде карты изогипс. Анализ точности построенной гипсометрической модели был выполнен сопоставлением меридианных сечений исследуемых систем. Причем средний гипсометрический уровень был задан данными каталога Казань-1162. В результате исследований установлено хорошее согласие рельефа в моделях, построенных по данным космической миссии Clementine и КСОТ.

Если говорить о перспективах продолжения исследований, начатых в данной работе, каталог КСОТ планируется использовать для трансформации к динамической системы координат топографических данных, полученных миссией КАGUYA. Начаты работы по отождествлению опорных точек в обеих упомянутых системах. Используя данные о положении центра масс Луны относительно ее центра фигуры, планируется определить более точно основные теории эволюционной истории Луны. Также будут выполнены исследования фрактальных свойств лунного рельефа.

Личный вклад автора: развитие метода определения положения центра Луны относительно ее центра фигуры на основе масс прямого использования динамической опорной системы объектов, построенной в системе центра масс и главных осей инерции небесного тела; определение параметров положения центра масс Луны относительно ее центра фигуры и оценка точности полученных величин; создание метода построения абсолютного каталога В краевой зоне Луны; построение опорной селеноцентрической динамической опорной сети в либрационной зоне Луны; создание опорного каталога объектов на поверхности Луны в небесной системе координат; определение параметров макрофигуры лунного диска,

109

полученных на основе анализа сводного опорного селеноцентрического каталога лунных объектов, построенного в небесной системе координат; участие в разработке и модернизации программных алгоритмов и пакетов программ для вычислений.

Данная работа выполнялась в отделе космической астрометрии и геодезии Астрономической обсерватории им. В.П. Энгельгардта Казанского (Приволжского) федерального университета. Шифр темы 2.702.2011, N гос. регистрации 0120125969, название: «Создание навигационной сети на базе спутниковых и наземных наблюдений, инновационных информационноматематических и наблюдательных технологий и прецизионного координатно-временного обеспечения».

Автор приносит благодарность своему научному руководителю, доктору физико-математических наук Нефедьеву Юрию Анатольевичу и всем коллегам, оказавшим помощь при выполнении представленной работы.

110

ЛИТЕРАТУРА

- Абалакин, В.К. Основы эфемеридной астрономии // М.: Наука.-1979.- С. 1-448.
- Абалакин, В.К., Аксенов, Е.П., Гребеников, Е.А. и др. Справочное руководство по небесной механике и астродинамике // М.; Наука.-1976.- С.72-81.
- Абалакин, В.К. Использование лазерных светолокационных наблюдений Луны для решения некоторых задач небесной механики и геодинамики // Труды ИТА АН СССР.- 1978.- Вып.17.- С. 82-133.
- Айвазян, С.А., Енюков, И.С., Мешалкин, Л.Д. Прикладная статистика. Статистическое исследование зависимостей // М.: Финансы и статистика, 1985. – С. 488.
- Астрономический ежегодник СССР на 1986 год // Л.: Наука.- 1984.т. 65.- С. 1-691.
- Быстров, Н.Ф. Автоматизация астрометрических измерений снимков Луны при помощи фотоэлектрического прибора // Астрономический журнал.- 1962.- т.39, № 1.- С.146-150.
- Быстров, Н.Ф. Использование длиннофокусного горизонтального телескопа с целостатной установкой для позиционных фотографических наблюдений Луны в Пулкове // Изв. ГАО АН СССР.- 1976, № 194.- С.158-159.
- Быстров, Н.Ф., Ризванов Н.Г. Позиционные наблюдения Луны на 8метровом горизонтальном телескопе АОЭ // В сб. Тр. 18-й Астром. конф. СССР, Л.:, Наука.- 1972.- С. 325-327.
- Быстров, Н.Ф., Ризванов, Н.Г. О новом методе фотографирования Луны со звездами на раздельных пластинках // Труды Казанской Гор. АО КГУ.- 1973, № 39.- С.156-175.
- 10. Быстров, Н.Ф. Приставка для фотографических позиционных наблюдений Луны // В сб.: Тр. 18-й Астром. конф. СССР. Л.:

Наука.- 1972.- С. 327-329.

- Валеев, С.Г. Построение каталога лунных объектов в системе опорных звезд // В кн.: Труды 18-й Астрометрической конференции СССР, Л.- 1972.- С.301-303.
- Валеев, С.Г. Регрессионное моделирование при обработке данных// М.: Наука, Гл. Редакция физ.-мат. лит.- 1991. – С. 1-272.
- Валеев, С.Г. Регрессионное моделирование при обработке данных// Казань: ФЭН. - 2001. – С. 1-296.
- Валеев, С.Г., Дьяков, В.И. Автоматизированная система для моделирования мегарельефа и гравитационных полей планет // Журнал «Известия вузов. Серия: Геодезия и аэрофотосъемка». М., 1998, № 4-5. С. 45 49.
- Валеев, С.Г., Дьяков, В.И. Автоматизированная система обработки данных большой размерности // Тез. докл. конф. «Проблемы современной радиоастрономии». - С.-Пб.: Изд. ИПА РАН, 1997.- Т.2 - С. 237 - 238.
- Валеев, С.Г., Дьяков, В.И. Модели мегарельефа Луны по данным космической программы "Клементина" // Вестник УлГТУ. Ульяновск: Изд.УлГТУ, 1999. С. 90-92.
- Валеев, С.Г., Кадырова, Г.Р. Экспертная система для решения астронометрических задач прогноза // Тез. докл. конф. «Проблемы современной радиоастрономии» - С.-Пб.: Изд. ИПА РАН, 1997. – Т.2 - С. 233-234.
- Валеев, С.Г., Кадырова, Г.Р., Турченко, А.А. Программная система поиска оптимальных регрессий // Вопросы современной науки и практики. Университет им. В.И. Вернадского. Сер. Технические науки. - 2008. -Т. 2, №4(14). - С. 97-101.
- 19. Валеев, С.Г., Нефедьев, Ю.А., Вараксина, Н.Ю. Построение глобальной селеноцентрической опорной координатной системы //

Известия ГАО РАН. – 2010. - №219, Т.4.- С. 57 – 61.

- Валеев, С.Г., Нефедьев, Ю.А., Шарафутдинов, И.М., Кутленков, М.В. Построение единой селеноцентрической системы координат в системе центра масс и главных осей инерции Луны // Изв. Крымской Астрофиз. Обс. - 2009. 104. № 6. - С. 212-216.
- Валеев, С.Г., Самохвалов, К.М. Региональные модели лунного рельефа на основе ортогональных разложений// Международная конференция «Околоземная астрономия – 2005», 19-24 сентября 2005. Казань. - 2006. - С. 373-375.
- Валеев, С. Г., Родионова, Т. Е. Программное обеспечение для решения задач структурно-параметрического оценивания при обработке данных // Известия вузов. Геодезия и аэрофотосъемка. 2004. № 1. С. 25-34.
- Вараксина, Н.Ю. Нефедьев, Ю.А., Заббарова, Р.Р.. Чуркин, К.О. Анализ космических и наземных селенографических опорных сетей // Известия ГАО РАН – 2013 - №220..- С. 23 – 28.
- 24. Вараксина, Н.Ю., Нефедьев, Ю.А., Рахимов, Л.И., Ризванов, Н.Г., Заббарова, Р.Р., Чуркин, К.О., Боровских, В.С. Метод создания каталога кратеров либрационной зоны Луны // Георесурсы.- 2012.- № 1 (43).- С. 62 64.
- 25. Вараксина, Н.Ю., Валеев, С.Г., Микеев, Р.Р., Нефедьев, Ю.А. Параметры положения центра масс Луны относительно центра ее фигуры на основе данных космических миссий Clementine, Kaguya и каталога ULCN // Ученые записки Казанского университета.- 2011.-Том 153, Кн.2.- С. 158 - 163.
- Вараксина, Н.Ю., Валеев, С.Г., Нефедьев, Ю.А. Каталог селеноцентрических опорных точек (КСОТ) // Издательство КФУ.-2013.- С. 1- 5464, http://diglib.kpfu.ru/xmlui/handle/123456789/820
- 27. Вараксина, Н.Ю., Нефедьев, Ю.А., Валеев, С.Г., Заббарова, Р.Р.,

Чуркин, К.О., Боровски, В.С. Новый метод построения единой селеноцентрической системы координат на поверхности Луны // Георесурсы.- 2012.- № 1 (43).- С. 44 - 46.

- Вараксина, Н.Ю., Нефедьев, Ю.А., Валеев, С.Г., Шарафутдинов, И.М. Селеноцентрическая координатная сеть, построенная в системе каталога КСК-1162 // Ученые записки Казанского университета.-2011.- Том 153, Кн.2.- С. 150 - 158.
- Гаврилов, И.В. Анизотропия дисперсий селенодезических координат и пути ее устранения // В кн.: Проблемы астрометрии, М.-1983.- С. 295-296.
- 30. Гаврилов, И.В., Кислюк, В.С., Дума, А.С. Сводная система селенодезических координат 4900 точек лунной поверхности // Киев: Наукова думка .- 1977.- С. 1- 172
- Гаврилов, И.В., Кислюк, В.С. Сводный каталог селеноцентрических положений 2580 базисных точек на Луне // Киев: Наукова думка.-1970.- С. 1-122.
- Губанов, В.С. Обобщенный метод наименьших квадратов. Теория и применение в астрометрии // СПб.: Наука.- 1997.- С. 318.
- Дубровский, А.С., Чиканов, Ю.А. Гармонический анализ рельефа Луны // Астрономический Вестник.- 1979. -13, № 2- С. 82-86.
- 34. Дубровский, А.С., Чиканов, Ю.А. Лунный эллипсоид // Астрономический Циркуляр.- 1978. № 985.- С 7-8.
- Дьяков, В.И. Регрессионные модели мегарельефа и гравитационных полей планет: дис. ... канд. техн. наук: 05.13.16: защищена 15.03.2000. - Ульяновск, 2000. —-С. 1-191.
- Кислюк, В.С. Геометрические и динамические характеристики Луны
 // Киев: Наукова думка .- 1988.- С. 1-184.
- 37. Кислюк, В.С. Об уточнении координаты ζ кратеров видимого полушария Луны по данным съемки КА «Зонд-8» // Космические

исследования.-1975.- т. 13, № 3.- С. 415-422.

- Кислюк, В.С. Сравнительный анализ современных селеиодезических опорных сетей // Астрометрия и Астрофизика.-1971, № 13.- С.19-30.
- 39. Кислюк, В.С. Эллипсоид инерции Луны // Кинематика и физика небесных тел.- 1985.- т.1, № 1.- С.41-48.
- 40. Липский, Ю.Н., Единая система селенодезических координат 2900 точек на видимом полушарии Луны // В кн.: Атлас обратной стороны Луны. М.- 1975.- С.59-75.
- Липский, Ю.Н., Никонов, В.А., Скобелева, Т.П. Единая система селенодезических координат из девяти каталогов на видимом полушарии Луны // М.: Наука.- 1973.- С. 1-384.
- 42. Липский, Ю.Н. Полная карта Луны 1:5 000 000 // М., Наука.- 1979.
- Лоусон, Ч., Хенсон, Р. Численное решение задач метода наименьших квадратов / Пер. с англ.; Под ред. Х.Д. Икрамова М.: Наука.- 1986.- С. 1-230.
- 44. Марков, А.Е., Родионова, Ж.Ф., Сурдин, В.Г., Чикмачев, В.И., Шевченко, В.В., Шингарева, К.Б., Шкуратов, Ю.Г. Путешествия к Луне// Москва: Физмалит.- 2009.- С. 1-511.
- 45. Нефедьев, А.А. Карты рельефа краевой зоны Луны на общем нулевом уровне // Известия АОЭ.- 1958, № 30.- С. 1-149.
- 46. Нефедьев, Ю.А., Валеев, С.Г., Ризванов, Н.Г. Исследование макрофигуры Луны по космическим и наземным наблюдениям // Труды Международной конференции «Основные направления развития астрономии в России», 21 - 25 сентября 2004, Казань.-2004.- С.255 – 256.
- 47. Нефедьев, Ю.А., Рахимов, Л.И. Карты краевой зоны Луны в цифровом виде // Труды Всероссийской конференции «Результаты и перспективы исследования планет», Ульяновск, 10 14 ноября

1997.- 1997.- C.62-63.

- 48. Нефедьев, Ю.А., Щукин, Е.М. Каталог 120 кратеров на поверхности Луны // Депонировано в ВИНИТИ.-1985, №4697-85.- С. 1 - 21.
- 49. Нефедьев, Ю.А., Валеев, С.Г., Ризванов, Н.Г. Метод построения единой селеноцентрической системы координат для видимой и обратной сторон Луны, приведенной к центру масс Луны и главным осям ее инерции // Тезисы Международной конференции «Астрономия и астрофизика начала XXI века» 1-5 июля 2008.-2008.- С. 35 - 36.
- 50. Нефедьев, Ю.А. Разработка моделей независимых селенодезических сетей, методов анализа звездных координатных систем и фигур небесных тел: дис. докт. физ.-мат. наук: 01.03.01: защищена 02.07.2007. — Москва, 2007. — С. 1-393.
- 51. Нефедьев, Ю.А. Теория и практика покрытий звезд Луной // Казань: Изд-во Казанского университета.- 2003.- С. 1 110.
- Никонов, В.А. Анализ систематических ошибок в системах селенодезических координат // Астрон. вестник.-1984.- т.18, №2.-С.107 - 116.
- 53. Никонов, В.А., Оценка точности высот селенодезических каталогов // Астрономический Циркуляр.-1970, № 582.- С. 3-5.
- 54. Никонов, В.А., Скобелева, Т.П. Результаты уравнения положений селенодезических каталогов в системе Mills-2 // Астрономический Циркуляр.-1971, № 627.- С. 1-3.
- 55. Рахимов, Л.И. Карты рельефа краевой зоны Луны в системе фундаментального каталога звезд // Известия АОЭ.- 1992, № 57.- С. 89-113.
- 56. Ризванов, Н.Г. Позиционные наблюдения Луны с горизонтальным телескопом на обсерватории им. В.П. Энгельгардта // В кн.- Труды 18-й Астрометрической конференции СССР. Л.- 1972.- С.321-324.

- 57. Ризванов, Н.Г. Применение длиннофокусного горизонтального телескопа с целостатом для позиционных наблюдений Луны фотографическим методом // В кн.: Новая техника в астрономии. М.-Л.: Наука.- 1965.- С. 56-57.
- Родионов, Б.Н., Нефедьев, А.А., Шпекин, М.И., Валеев, С.Г. Изучение рельефа обратной стороны Луны по фотографиям КА "Зонд-8"// Космич. иссл.- 1976.- Т.14, №4.- С. 624-629.
- 59. Родионова, Ж.Ф., Карлов, А.А., Скобелева, Т.П. и др. Морфологический каталог кратеров Луны. // Под общей редакцией В.В.Шевченко.- М.: Изд-во МГУ, 1987.- С. 173.
- Сагитов, М.У. Лунная гравиметрия // М.: Наука, Гл. Редакция физ.мат. лит., 1979. – С. 1-432.
- 61. Себер, Д. Линейный регрессионный анализ // Пер. с англ.; Под ред.
 М.Б.Малютова. М.: Мир, 1980. С. 450.
- 62. Хабибуллин, Ш.Т. К вопросу о системах селенографических координат, о прецессии и нутации оси вращения Луны // Астрономический журнал.- 1968, № 3.- С.663-674.
- Кабибуллин, Ш.Т. Лунная картография и селенографические координаты // В кн.: Луна, М.- I960.- С. 57-75.
- 64. Хабибуллин, Ш.Т. Физическая либрация Луны // Известия АОЭ. 1958, № 31. С. 1-182.
- 65. Чугунов, И.Г. Карты краевой зоны Луны, по наблюдениям покрытий звезд// Письма в АЖ.- 1977.- т.3, № 4.- С. 182 183.
- 66. Чуйкова, Н.А. Геометрическая фигура Луны, представленная в виде разложения по сферическим и выборочным функциям// Астрономический журнал.- 1975. - Том 52. №6. - С. 1279-1292.
- 67. Чуйкова, Н.А. Геометрическая фигура Луны, представленная в виде разложения по сферическим и выборочным функциям // Астрономия.- 1975, т.52, № 6, С 1279-1292.

- Чуйкова, Н.А. О представительности разложения геометрической фигуры Луны по сферическим и выборочным функциям // Астрономия.- 1975, т. 55, № 3, С 617-627.
- Шакиров, К.С. Взаимное расположение центров массы и фигуры луны // В кн.: Труды 16-й астрометрической конференции СССР, Л.- 1965.- С.113-114.
- 70. Шакиров, К.С. Определение постоянных физической либрации и координат кратера Местинг А по отношению к центру массы Луны // Известия АОЭ.- 1963, № 34.- С. 39-59.
- 71. Шевченко, В.В. Современная селенография // М.: Наука.- 1980.- С. 1-388.
- Яцкив, Я.С. О состоянии и тенденциях развития астрометрических исследований // Астрометрия и Астрофизика.- 1983.- № 50.- С. 56-59.
- 73. Araki, H., Tazawa, S., Noda, H., Tsubokawa, T., Kawano, N., Sasaki, S. Observation of the lunar topography by the laser altimeter LALT on board Japanese lunar explorer SELENE // Advances in Space Research. Volume 42, Issue 2.- 2008.- P. 317-322.
- 74. Archinal, B.A., Kirk, R.L, Duxbury, T.C., Lee, E.M., Sucharski, R., Cook, D., 2003. Mars Digital Image Model 2.1 control network// Lunar and Planetary Science XXXIV. 2003.http://www.lpi.usra.edu/meetings/lpsc2003/pdf/1485.pdf.
- 75. Archinal, B.A., Lee, E.M., Kirk, R.L., Duxbury, T.C., Sucharski, R.M., Cook, D.A., Barrett, J.M. A New Mars Digital Image Model (MDIM 2.1)
 Control Network// Int. Arch. Photogramm. Rem. Sens., XXXV, B, "Geo-Imagery Bridging Continents", Istanbul. - 2004.http://www.isprs.org/proceedings/xxxv/congress/comm4/papers/464.pdf.
- 76. Archinal, A., Rosiek, M.R., Kirk, R.L. and Redding, B.L. The Unified Lunar Control Network 2005// U.S. Geological Survey: Open-File

Report.- 2006.- P. 1- 20.

- Archina, I B.A., Rosiek, M. R., Kirk, R. L., and Redding, B. L. Completion of the unified lunar control network 2005 and topographic model // U. S. Geological Survey, Astrogeology Team Lunar and Planetary Science XXXVIII.- 2007. http://www.lpi.usra.edu/meetings/lpsc2006/pdf/2310.pdf
- 78. Archinal, B.A., Rosiek, M. R., Kirk, R. L., and Redding, B. L. Final completion of the uified lunar control network 2005 and lunar topographic model // U. S. Geological Survey, Astrogeology Team Lunar and Planetary Science XXXVIII.- 2007. http://www.lpi.usra.edu/meetings/lpsc2007/pdf/1904.pdf
- 79. Archinal, B.A., Rosiek, M.R. The Unified Lunar Control Network 2005// By Brent A. Archinal1, Redding1 USGS Open File Report, <u>http://pubs.usgs.gov/of/2006/1367/ULCN2005-OpenFile.pdf</u> - 2006.- P. 1-18.
- 80. Arthur, D.W.G. A new secondary selenodetic triangulation // Communications of the LPL. 1968. Vol. 7, № 5. P. 3O3 312.
- Belton, M.J.S., et al. Lunar impact basins and crustal heterogeneity -New western limb and far side data from Galileo // Science.- 1992.-№255.- P. 570–576.
- Belton, M.J.S., et al. Galileo multispectral imaging of the north polar and eastern limb regions of the Moon // Science.- 1994.- №264.- P. 1112– 1115.
- 83. Bessel, F. Ueber die Bestimmung der Libration des Mondes, durch Beobachtungen // Astronomische Nachrichten. 1839. Vol. 16, № 376. P.257-272.
- Bessel, F. Vorlaufuge von einem auf der Konigsberger Stern-warte befindlichen grossen Heliometer // Astronomische Nachrichten. 1831. №. 189. P. 397-427.

- Bills, B., Ferrari, A. A harmonic analysis of lunar topography // Icarus.-1977.- Vol. 31, №2.- P. 244-259.
- Binder, A.B., 1998. Lunar Prospector: Overview // Science.- № 281.- P. 1475–1476.
- Bowker, D.E., and Hughes, J.K. Lunar Orbiter Photographic Atlas of the Moon // NASA SP-206, Washington, DC.- 1971.- P. 1-675.
- 88. Cerroni, P., De Sanctis, M. C., Josset, J.L., Beau-vivre, S., Besse, S., et al. AMIE on SMART-1: A preliminary analysis of colour information from images of the Oppenheimer region on the Moon // Lunar Planet. Sci., XXXVIII.- 2007.- <u>http://www.rm.iasf.cnr.it/Smart1/CerroniLPSC07.pdf</u>.
- Chin, G., Bartels, A., Brylow, S. Lunar Reconnaissance Orbiter overview: the instrument suite and mission. //Materials of Lunar and Planetary Science XXXVII.- 2006.- P. 1949.
- 90. Cook, A., Oberst, J., Roatsch, T., Jaumann, R., Acto, C. Clementine imagery: Selenographic coverage for cartographic and scientific use // Planet // Space Sci.- 1996.-N.44.- P. 1135–1148.
- 91. Cook, A.C., Watters, T.R., Robinson, M.S., Spudis, P.D., and Bussey,
 D.B.J. Lunar polar topography derived from Clementine stereo
 Imagery// J. Geophys. Res.- 2000.- N. 105(E5).- P. 12,023–12,033.
- 92. Cook, A.C., Spudis, P.D., Robinson, M.S., and Watters, T.R., Lunar topography and basins mapped using a Clementine stereo digital elevation model// Lunar Planet Sci., XXXIII, Lunar and Planetary Institute, Houston.- 2002.- Abstract #1281.
- 93. Davies, M.E., Colvin, T.R., Meyer, D.L. The unified lunar control network: 1994 version // Journal of Geophysical Research.- 1994.- Vol. 99, Issue E11.- P. 23,211-23,214
- 94. Davies, M.E., Colvin, T.R. Lunar Coordinates in the regions of the Apollo landers.//Journal of Geophysical Research.- 2000.- Vol. 105, N/.E8.- P. 20277-20280.

- 95. Doyle, F.J., Elassal, A.A., Lucas, J.R. Selenocentric geodetic reference systems // NOAA Tech. Rep. NOS 70, NGS 5, U.S. Dep. of Commerce, Washington, D. C.- 1977.- P. 1-53.
- 96. Dunne, J., Borges, E. The Voyage of Mariner 10: Mission to Venus and Mercury// Scientific and Technical Information Division, National Aeronautics and Space Administration. - 1978. – P. 1- 224.
- 97. Eckhard, D.H. Lunar physical librations theory // In: Measure of the Moon. Holland. 1967. P. 40-51.
- 98. Eckhard, D.H. Theory of the librations of the Moon // Moon and Planets. - 1981. - Vol.25, №1. - P. 3-49.
- 99. Eckhardt D.H. Physical librations due to the third and fourth degree harmonics of the lunar gravity potential // Moon. - 1973. - Vol.6, №1-2.-P. 127-134.
- 100. Edwards K.E., Colvin T.R., Becker T.L., Cook D., Davies M. E., Duxbury T. C., Eliason E. M. et. al. Global Digital Mapping of the Moon.// Materials of Lunar and Planetary Conference XXVII: Houston, Lunar and Planetary Institute.- 1996.- P. 335.
- 101. Galimov, E.M., Polishchuk, G.M., Sevastianov, N.N. Objectives and Facilities of Lunar Exploration by Russia // 8th ILEWG Conference on Exploration and Utilization of the Moon, 23-27 July 2006, Beijing, China.- 2006.- P. 15 - 16.
- 102. Gavrilov, I.V. On the standardization of the selenodetic frame of reference // Moon.- 1973.- Vol. 8, №. 4.- P. 511 - 514.
- 103. Goossens, S., Matsumoto, K., Liu, Q., et al. Lunar gravity field determination using SELENE same-beam differential VLBI tracking data // J. Geod.- 2011.-N. 85.- P. 205–228.
- 104. Gudas, C.L. Development of the lunar topography in to spherical harmonics // Icarus. 1963. Vol.2. № 5/6. P. 423-439.
- 105. Habibullin, Sh.T., Rizvanov N.G. Independent selenocentric system

coordinates // Earth, Moon and Planets.- 1984.- Vol. 30, №1.- P. 1-19.

- 106. Habibullin, S.T., Rizvanov, N.G., Bistrov, N.P. Star calibrated lunar photography by method of separate plates for a determination of the coordinates of lunar control points // Moon. - 1974.- Vol.11, №. 1.-P.125-136.
- 107. Haruyama, J., Ohtake, M., Matunaga, T., et.al. Planned digital terrain model products from Selene Terrain Camera data. //Materials of Lunar and Planetary Science XXXVII.- 2006.- P. 1132.
- 108. Huber, P.J. Robust Statistics// Wiley, New York.- 1981.- P. 1-300
- Josset, J.-L., et. al. Science objectives and first results from the SMART-1/AMIE multicolour micro-camera// Advances in Space Research.- 2006.- N. 37.- P. 14–20, doi: 10.1016/j.asr.2005.06.078.
- 110. Kato, M., Takizawa, Y., Susaki, S., and the SELENE Project Team SELENE Mission: Present status and project goals // Lunar Planet. Sci., XXXVIII, Abstract #1211, Lunar and Planetary Institute, Houston.-2007.- <u>http://www.lpi.usra.edu/meetings/lpsc2006/pdf/1233.pdf</u>.
- 111. Kirk, R.L., Archinal, B.A., Gaddis, L.R., and Rosiek, M.R., Cartography for lunar exploration: 2008 status and mission plans// International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences, XXXVII, Part 4, "A Silk Road for Information from Imagery", Beijing, 3–11 July.- 2008.- P. 1473–1480.
- Li, C.L., Ren, X., Liu, J.J., Zou, at al. Laser altimetry data of Chang'E-1 and the global lunar DEM model // Science China Earth Sciences.- Vol. 53, Issue 11.- 2010.- P. 1582-1593.
- Livingston, R.G., et al. Aerial cameras. In Manual of Photogrammetry, 4th Edition // American Society of Photogrammetry, Falls Church, VA.-1980.- P. 187–278.
- 114. Malin, M. and Ravine, M. Clementine High Resolution Camera Mosaicking Project // TR, Malin Space Science Systems San Diego,

1998.

- 115. Matsumoto, K., Kikuchi, F., Iwata, T., Kono, Y., et. al. VLBI radio sources on a lander and an orbiter for study of lunar internal structure proposed for SELENE-2 mission // "Astrokazan 2011". Int. Astr. Congr. Proc. Kazan, August.- 2011.- P. 6-11.
- 116. Merton, E.D., Colvin, T.R. A Unified Lunar Control Network: The Near Side // J. Geof. Reseach. 1987. Vol. 92, №. B13. P. 14,177 14,184.
- 117. Migus, A. Analytical lunar libration tables // The Moon and the Planets. 1980.- Vol. 23, №. 4. P. 391-427.
- 118. Mills, G.A., Sudbury, P.V. Absolute coordinates of lunar features III// Icarus.- 1968.- vol. 9, N. 3.- P. 538 - 561.
- Molholland, J.D. Lunar dynamics and observational coordinate systems//
 Moon. 1973. Vol. 8, №. 4. P. 548-556.
- Moons, M. Analytical theory of libation of the Moon // Moon and Planets. 1982. Vol.27, №. 3. P. 257-284.
- 121. Morrison, L.V. An analysis of lunar occultations in the years 1943 1974 for corrections to the constants in Brown's theory, the right ascension system of the FK4, and Watts' lunar - profile datum // Monthly Notices.-1979.- №. 187.- P. 41 -82.
- 122. Morrison, L.V., Appleby G.M. Analysis of lunar occultations III. Systematic corrections to Watts' limb - profiles for the // Monthly Notices. – 1981.- №. 196. - P. 1013-1020.
- Morrison, L.V. Analysis of lunar occultations IV. Personal Rotation of the FK4 reference frame // Monthly Notices. 1982.- №. 198. P. 1119-1127.
- 124. Morrison, L.V., Martin, R.J. A digital version of C.W. Watts' charts of the marginal zone of the Moon // The Moon. – 1971.- № 2. - P. 463-467.
- 125. Namiki, N., et al. Far side gravity field of the Moon from four-way Doppler measurements of SELENE (Kaguya) // Science.- 2009.- № 323.-

P. 900.

- 126. Nefedjev, Yu.A., Rahimov, L.I., Rizvanov, N.G. The computer-readable version of charts of the marginal zone of the Moon of Engelhardt Astronomical Observatory // Труды Международной конференции «AstroKazan -2001: Astronomy and geodesy in new millennium», Казань, 24-29 сентября 2001. - 2001. - P.221-223.
- 127. Noda, H., Araki, H., Goossens, S. Illumination conditions at the lunar polar regions by KAGUYA(SELENE) laser altimeter // Geophysical Research Letters.- 2008.- Vol. 35, Issue 24, L24203.- P. 1-5.
- 128. Nozette S., Rustan, P., Pleasance, L. P., Kordas, J. F., et al. The Clementine Mission to the Moon: Scientific Overview // Science 16 December 1994.- P. 1835-1839.
- Nozette, S., et al. The Clementine mission to the Moon: Scientific overview // Science.- 1994.- N. 266.- P. 1835–1839.
- Robinson, M.S., Hawke, B.R., Lucey, P.G., and Smith, G.A. Mariner 10 images of the Moon // J. Geophys. Res.- 1992.- №. 97(E11).- P. 18,265– 18,274.
- Rosiek, M.R., Aeschliman, R. Lunar shaded relief map updated with Clementine data// LPS XXXII.- 2001.- Abstract N.1943.
- Schimerman, L.A., Cannell, W.C., Meyer, D. L. Relationship of spacecraft and earthbased selenodetic systems // Proc. 15th Gen. Ass. IAU.- 1973.- Sydney, Australia.- P. 21-30.
- 133. Schimerman L.A. The expanding Apollo control system // Presented at the 16th General Assembly of the IAU. - Deffense mapping agency aerospace center. - St. Louis, Missouri. - 1976.- P. 16.
- 134. Scholten, F., Oberst, J., Matz, K., Roatsch, T. The global lunar 100 meter raster DTM from LROC WAC stereo models // 42nd Lunar and Planetary Science Conference (2011). -<u>http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2046.pdf</u>.

- 135. Shevchenko, V.V. New view on the Moon // In book:"Astrokazan 2011".Int. Astr. Congr. Proc. Kazan, August, 2011.- P.12-21.
- 136. Sjogren, W.L., Wollenhaupt, W.R. Lunar shape via the Apollo laser altimeter // Sciense.- 1973.- Vol. 179, № 4070.- P. 275-278.
- 137. Smith, D.E., Zuber, M.T., Neumann, G.A., Lemoine, F.G. Topography of the Moon from the Clementine lidar // J. Geophys. Res. - 1997.- Vol. 102.- P.1591-1611.
- 138. Smith, D.E., Zuber, M.T., Neumann, G.A., Lemoine, F.G. The topography of the Moon from the Clementine LIDAR // J. Geophys. Res.- 1995.- № 15.- P. 27-35.
- 139. Staid, L. R., Eliason, E. M., E. M. Lee, T. L. Becker, at. al. A Near-Infrared (NIR) Global Multispectral Map of the Moon from Clementine// Lunar Planet. Sci., XXXIV: Lunar and Planetary Institute, Houston.-2003.- Abstract no. 2093.
- 140. Varaksina, N., Nefedyev, Y., Valeev, S., Mikeev, R., Andreev, A. Analysis of data of "Clementine" and "Kaguya" missions and "ULCN" and "KSC-1162" catalogues // Advanced in Space Research.- 2012.-№50, P. 1564 – 1569. DOI: 10.1016/j.asr.2012.07.012.
- 141. Varaksina, N.Y., Nefedyev, Y.A., Valeev, S.G., Zabbarova, R.R., Borovskih, V.S. The Problem of the Making Global Selenocentric Reference System // Georesources. - 2012. - № 1(12). - P. 40 - 42.
- 142. Varaksina, N., Nefedyev, Yu., Valeev, S., Sharafutdinov, I., Zabbarova, R. The method of a reference selenocentric coordinate system construction for visible and far sides of the Moon referred to the lunar mass center and to its main inertia axes // Astronomical and Astrophysical Transactions. 2012. Vol. 27, Issue 3. P. 503 508.
- 143. Varaksina, N., Nefedyev, Yu., Valeev, S., Samokhvalov, K., Sharafutdinov, I., Zabbarova, R. Modeling of the lunar visible side figure // Astronomical and Astrophysical Transactions. 2012. V. 27, Issue 3.

- P.509 – 512.

- 144. Varaksina, N., Nefedjev, Y., Valeev, S., Rizvanov, N., Kutlenkov, M. The modeling of a lunar visible side macrofigure // European Geosciences Union, EGU General Assembly 2009, Vienna, Austria, 19-24 April 2009, Geophysical Research Abstracts.-2009.- Vol. 11.- P. EGU2009-11462.
- 145. Varaksina, N., Nefedjev, Y., Valeev, S., Sharafutdinov, I., Kutlenkov, M. The construction method of united celenocentric coordinates system for visible and reverse lunar sides, brought to the lunar center masses and main axis of its inertia // European Geosciences Union, EGU General Assembly 2009, Vienna, Austria, 19-24 April 2009, Geophysical Research Abstracts.-2009.- Vol. 11.- P. EGU2009-11491.
- 146. Varaksina, N.Y., Nefedjev, Yu.A., Valeev, S. G., Rizvanov, N.G., Mikeev, R.R. The obtaining relative position of lunar centre masses and centre of the figure in selenocentric catalogues // European Geosciences Union, EGU General Assembly 2009, Vienna, Austria, May, 5, 2010, Geophysical Research Abstracts.-2010.- Vol. 12.- P. EGU2010-14967.
- 147. Varaksina, N., Nefedjev, Yu., Rakhimov, L., Rizvanov, N., Kutlenkov, M. The building of the catalogue of a craters lunar libration zone // European Geosciences Union, EGU General Assembly 2009, Vienna, Austria, 19-24 May, 5, 2010, Geophysical Research Abstracts.-2010.-Vol. 12.- P. EGU2010-14968.
- 148. Varaksina, N., Nefedyev, Yu., Valeev, S., Sharafutdinov, I. Making selenocentric reference coordinates net in the dynamic system // European Planetary Science Congress 2011, EPSC-DPS Joint Meeting, La Cite Internationale des Congres Nantes Metropole, 03 – 07 October 2011, Nantes, France.-2011.- Vol. 6.- P. EPSC-DPS2011-43.
- 149. Watts, C.B. The marginal zone of the Moon // Astron. Pap. Americ.

Ephem. - 1963.- Vol.1.- P. 1-951.

- 150. Weller, L., Red-ding, B., Becker, T. Gaddis, L., et al., 2007 USGS Lunar Orbiter Digitization Project: Updates and Status, LPS #2092 abstract for Lunar and Planetary Science XXXVIII.- 2007.http://astrogeology.usgs.gov/Projects/LunarOrbiterDigitization.
- Wieczorek, M.A., Joliff, B.L., Pritchard, M.E., Weiss, B.P., Williams, J.G., Hood, L.L. The constitution and structure of the lunar interior // Rev Mineral Geochem.- 2006.- N. 60.- P.221–364.
- 152. Williams, B.G., Mottinger, N.L. Venus Gravity Field: Pioneer Venus Orbiter Navigation Results // Icarus.- 1983.- №56.- P. 578-589.
- 153. Yue, Z., Xie, H., Liu, J., Ouyang, Z. An introduction of Chinese lunar exploration program // 38th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXVIII), held March 12-16, 2007 in League City, Texas. LPI Contribution. - No. 1338.- P.2082.
- 154. Zelenyi, L.M., Zakharov, A.V., Zakutnyaya, O. V. Will the Lunar Renaissance Come Forth? // Solar System Research.- 2011.- Vol. 45, No. 7.- P. 697–704
- 155. Zuber, M. T., Smith, D.E., Lemoine, F.G., Neumann G.A. The Shape and Internal Structure of the Moon from the Clementine Mission// Science.- 1994.- Vol. 266.- P. 1839-1843.
- 156. USGS Clementine Basemap Mosaic// by lfred McEwen at. al., Lunar and Planetary Laboratory .- 1997.-<u>http://pdsimage.wr.usgs.gov/archive/clem1-l-u-5-dim-basemap-</u> <u>v1.0/cl_3013/document/volinfo.pdf</u>
- 157. USGS The Clementine UVVIS global lunar mosaic // by Eliason, E. M. et al. .-1999. <u>http://www.lpi.usra.edu/lunar/tools/clementine/instructions/UVVIS_DIM</u>__Info.html

ПРИЛОЖЕНИЕ 1

Каталог А	ACIC
-----------	------

№ точки	ξ в единицах	η в	ζв	радиус-вектор
В	среднего радиуса	елиницах	елиницах	кратера,
каталоге	1738.1 км	среднего	среднего	отсчитываем
		радиуса	радиуса	ый от центра
		1738.1 км	1738.1 км	масс Луны R
1	-0,77844	0,08974	0,61965	1736,4
2	-0,49553	0,17374	0,85099	1738,0
3	-0,51701	0,00316	0,85548	1737,4
4	-0,32158	0,01695	0,94632	1737,4
5	-0,09071	-0,05580	0,99423	1738,0
6	-0,01585	-0,15964	1,06737	1876,0
7	0,11796	0,02808	0,99308	1738,9
8	0,00597	0,02042	0,99971	1738,0
9	-0,00025	-0,00076	0,99876	1735,9
10	0,07172	0,40017	0,91377	1738,3
11	-0,09890	0,46978	0,87680	1737,5
12	-0,33919	0,55485	0,75829	1736,3
13	-0,47743	0,61218	0,62802	1735,6
14	-0,45632	0,73785	0,49439	1735,6
15	0,11296	0,78218	0,61025	1735,5
16	0,54662	0,65615	0,51865	1736,6
17	0,32451	0,41804	0,84681	1735,6
18	0,31398	0,28582	0,90384	1735,7
19	0,22664	0,10332	0,96830	1737,8
20	0,30814	-0,10648	0,94516	1737,8
21	0,25061	-0,39041	0,88503	1736,8
22	0,07631	-0,13228	0,98830	1738,2
23	-0,19664	-0,19997	0,95907	1736,8
24	-0,67249	-0,28729	0,68125	1737,1
25	-0,55996	-0,36765	0,74129	1736,6
26	-0,20067	-0,37279	0,90449	1735,8
27	0,29487	-0,67469	0,67566	1736,9
28	0,46483	-0,72016	0,51092	1734,4
29	0,49822	-0,44013	0,74607	1736,8
30	0,72894	-0,03504	0,68154	1735,6
31	0,75746	0,12620	0,63762	1734,8
32	0,83940	0,22248	0,45116	1700,9
33	0,77892	0,38083	0,49379	1734,3
34	0,68683	0,45775	0,56301	1736,6
35	0,58714	0,52726	0,56653	1688,5
36	0,45289	0,70390	0,54578	1736,8
37	0,31536	0,78141	0,53560	1735,4
38	0,25506	0,87890	0,40029	1736,1
39	0,22465	0,71372	0,66210	1736,6
40	0,33148	0,65778	0,67538	1737,0
41	0,31257	0,58769	0,74469	1736,1

42	0,79892	0,59523	0,08045	1737,3
43	0,38239	0,54086	0,74742	1735.8
44	0,41816	0,52461	0,74016	1736.3
45	0,48757	0,43299	0,75721	1736,9
46	0,60984	0,35700	0,70704	1737.5
47	0.69640	0.24544	0.67321	1736.7
48	0,57913	0,24752	0,77574	1736,7
49	0.44197	0.24960	0.86039	1736.3
50	0,34879	0,23252	0,90705	1736.8
51	0,41201	0,18528	0,89138	1736,9
52	0,35360	0,05999	0,93300	1737,3
53	0,44763	0,04006	0,89156	1735,4
54	0,40839	-0,01021	0,91092	1735,2
55	0,48558	-0,04544	0,87163	1736,0
56	0,53082	0,08549	0,84255	1737,2
57	0,54499	0,17903	0,81858	1737,4
58	0,66035	0,06401	0,74660	1736,0
59	0,76422	0,00582	0,64453	1737,7
60	0,81053	0,03882	0,58148	1735,1
61	0,82448	-0,02200	0,56213	1734,8
62	0,86174	-0,09785	0,49495	1735,6
63	0,77042	-0,15309	0,61655	1735,6
64	0,60430	-0,11796	0,78760	1737,6
65	0,54073	-0,13984	0,82721	1734,8
66	0,56148	-0,20364	0,79948	1734,5
67	0,61434	-0,29542	0,72855	1734,2
68	0,74805	-0,29724	0,59169	1736,4
69	0,83680	-0,31686	0,44283	1735,3
70	0,64764	-0,37949	0,65953	1736,7
71	0,52235	-0,34856	0,77657	1735,8
72	0,42699	-0,34781	0,83397	1737,1
73	0,34741	-0,38267	0,85649	1738,7
74	0,36074	-0,48253	0,79834	1738,4
75	0,44860	-0,43362	0,78052	1736,8
76	0,58993	-0,48291	0,64734	1738,3
77	0,71454	-0,55243	0,42878	1737,8
78	0,55179	-0,61478	0,56324	1737,8
79	0,46407	-0,60663	0,64462	1737,1
80	0,37591	-0,70666	0,59648	1735,0
81	0,33621	-0,60930	0,71833	1738,3
82	0,24701	-0,52830	0,81233	1738,1
83	0,35218	-0,28655	0,88926	1735,4
84	0,13044	-0,76547	0,62922	1737,1
85	0,04359	-0,84159	0,53711	1736,9
86	0,03726	-0,71835	0,69272	1735,7
87	0,09924	-0,54670	0,83127	1737,9
88	0,04895	-0,45527	0,88817	1736,8
89	0,07865	-0,41906	0,90370	1736,8
90	0,05037	0,35964	0,93124	1737,3
91	0,32886	-0,23659	0,91506	1739,4

92	0,26556	-0,17786	0,94769	1738,3
93	0,20577	-0,22225	0,95266	1737,5
94	0,12035	0,65483	0,74654	1738,6
95	0,20865	-0,06669	0,97629	1739,1
96	0,28985	-0,04685	0,95627	1738,7
97	0,24307	0,00304	0,97042	1738,8
98	0,21508	0,16441	0,96242	1737,7
99	0,25013	0,33548	0,90641	1735,2
100	0,25208	0,44661	0,85720	1736,2
101	0,21004	0,50720	0,83436	1735,9
102	0,04883	0,65988	0,74733	1734,9
103	-0,00239	0,63314	0,77236	1735,8
104	0,05544	0,90610	0,41746	1736,7
105	-0,02039	0,81987	0,56969	1735,6
106	-0,06698	0,78918	0,60960	1737,1
107	-0,14231	0,68669	0,71080	1735,5
108	-0,09724	0,59400	0,79692	1735,8
109	-0,12437	0,54206	0,82983	1736,3
110	0,01568	0,48764	0,87225	1737,1
111	0,14350	0,37552	0,91507	1737,2
112	0,10298	0,33840	0,93520	1737,9
113	-0,03151	0,30045	0,95409	1739,4
114	-0,08510	0,24200	0,96583	1736,9
115	-0,14355	0,32031	0,93602	1737,5
116	-0,07354	0,42044	-0,90564	1740,2
117	-0,21798	0,51877	0,82542	1736,3
118	-0,23396	0,61727	0,75043	1737,1
119	-0,23767	0,71273	0,65729	1735,1
120	-0,32677	0,69042	0,64319	1735,6
121	-0,30511	0,78001	0,54388	1735,8
122	-0,46967	0,79532	0,37971	1735,8
123	-0,58500	0,65382	0,47684	1735,6
124	-0,62820	0,50834	0,58697	1736,0
125	-0,46944	0,48540	0,73670	1737,0
126	-0,36512	0,57791	0,72837	1736,2
127	-0,34948	0,47696	0,80560	1736,9
128	-0,35032	0,29321	0,88876	1736,9
129	-0,50958	0,34223	0,78931	1737,9
130	-0,73386	0,36697	0,57109	1737,5
131	-0,78054	0,29847	0,54670	1735,7
132	-0,87158	0,20272	0,44312	1735,6
133	-0,77705	0,21020	0,59222	1737,0
134	-0,65009	0,27597	0,70654	1736,3
135	-0,65633	0,17404	0,73330	1737,0
136	-0,68631	0,08101	0,72192	1737,0
137	-0,76050	0,03332	0,64729	1/36,8
138	-0,88815	0,01235	0,45/38	1/36,5
139	-0,84719	-0,09039	0,52137	1736,1
140	-0,75218	-0,11553	0,64681	1735,9
141	-0,70429	-0,05516	0,70673	1736,8

142	-0.64465	0.00626	0.76365	1737.0
143	-0.65508	-0.08216	0.75022	1737.0
144	-0.62657	-0.12378	0.76831	1736.5
145	-0.50952	0.07628	0.85686	1737.8
146	-0.44724	0.10332	0.88803	1737.5
147	-0.31158	0.11993	0.94248	6.8890
148	-0.26332	0.05703	0.96274	1737.6
149	-0.20885	0.03406	0.97700	1737.5
150	-0.24428	-0.02791	0.96944	1738.3
151	-0.02910	-0.07009	0.99694	1737.8
152	-0.37963	-0.16937	0.90847	1736.5
153	-0.42922	0.16160	0.88775	1736.7
154	-0.41912	-0.21459	0.88175	1737.4
155	-0.69992	-0.24683	0.66870	1736.3
156	-0.90872	-0.21955	0.35347	1737.2
157	-0.76790	-0.29549	0.56786	1737.6
158	0.09610	-0.99303	-0.07569	1739.0
159	-0.55025	-0.38071	0.62879	1595.9
160	-0.53163	-0.43351	0.72637	1736.5
161	0.26661	-0.55129	0.78967	1736.9
162	0.43239	-0.73274	0.52398	1736.7
163	-0.21892	-0.88726	0.40537	1737.6
164	-0.27017	-0.79183	0.54687	1737.3
165	-0.31089	-0.55285	0.77374	1738.9
166	-0.28839	-0.42058	0.85918	1736.6
167	-0,19691	-0,32849	0,92323	1737.3
168	-0,29391	-0,29242	0,90932	1737,0
169	-0,35316	-0,31382	0,88057	1736,9
170	-0,35405	-0,24730	0,90144	1737,3
171	-0,28566	-0,23480	0,92842	1737,0
172	-0,30869	-0,17593	0,93415	1737,1
173	-0,24712	-0,20730	0,94559	1736,5
174	-0,20603	-0,17355	0,96248	1737,2
175	-0,11998	-0,09723	0,98787	1737,9
176	-0,14121	-0,03131	0,98966	1738,4
177	-0,06219	0,11057	0,99257	1739,2
178	-0,10556	0,14753	0,98105	1734,1
179	0,00518	0,17566	0,98468	1738,5
180	0,11769	0,22885	0,96633	1738,1
181	0,08700	0,13230	0,98774	1738,7
182	0,10289	0,06081	0,99309	1738,5
183	0,04207	0,05674	0,99721	1737,6
184	0,12794	-0,03667	0,99133	1738,5
185	0,13160	-0,07071	0,98940	1739,2
186	0,05162	-0,03846	0,99807	1738,3
187	-0,01175	-0,05048	0,99892	1738,6
188	-0,05578	-0,08702	0,99533	1739,3
189	-0,08734	-0,16627	0,98210	1737,9
190	-0,12667	-0,16763	0,97721	1737,3
191	-0,11576	-0,26042	0,95795	1737,1

192	-0,10366	-0,31607	0,96810	1779,2
193	-0,16867	-0,31215	0,93423	1736,9
194	-0,17470	-0,42637	0,88612	1735,9
195	-0,09634	-0,47282	0,87523	1737,1
196	-0,55133	0,10944	0,82630	1737,0

Каталог AMS

№ точки	ξ в единицах	η в	ζв	радиус-вектор
В	среднего радиуса	единицах	единицах	кратера,
каталоге	1738.1 км	среднего	среднего	отсчитываем
		радиуса	радиуса	ый от центра
		1738.1 км	1738.1 км	масс Луны R
1	0,89556	0,10385	0,42877	1735,2
2	0,88964	0,05954	0,44723	1733,8
3	0,76651	0,40689	0,49141	1733,4
4	0,71387	0,57221	0,40316	1737,7
5	0,7026	0,59352	0,39697	1741,1
6	0,64833	0,46038	0,60169	1733,2
7	0,65364	0,23078	0,72056	1737,8
8	0,75775	0,12595	0,63636	1733,8
9	0,642	0,09593	0,75768	1734,1
10	0,75878	0,0323	0,64746	1734,6
11	0,80304	0,04145	0,59091	1734,4
12	0,49949	0,0377	0,86464	1736,8
13	0,46282	0,136	0,8764	1738,8
14	0,51741	0,15389	0,84118	1737,2
15	0,52939	0,30481	0,78971	1735,3
16	0,57931	0,24763	0,77376	1734,3
17	0,46097	0,36915	0,80606	1736,8
18	0,49585	0,40157	0,76923	1737,1
19	-0,00022	-0,00064	0,99912	1736,6
20	0,53623	0,38398	0,75154	1737,9
21	0,6345	0,69363	0,34093	1738,1
22	0,53953	0,58748	0,60221	1737,1
23	0,54639	0,65599	0,51918	1736,7
24	0,45554	0,83247	0,31128	1735,9
25	0,41004	0,8558	0,31183	1736,2
26	0,36359	0,88077	0,29988	1736,3
27	0,34086	0,85221	0,39633	1737,7
28	0,52465	0,7232	0,44944	1738,3
29	0,43166	0,77907	0,45525	1738,6
30	0,43474	0,7234	0,53415	1736
31	0,41445	0,6466	0,64028	1737,9
32	0,41864	0,52483	0,74224	1739,5
33	0,38498	0,55284	0,73896	1738
34	0,31267	0,58796	0,74627	1738,4
35	0,34184	0,54713	0,7645	1738,7
36	0,42334	0,29571	0,85465	1735,6

27	0.2620	0 1075	0.02662	1720 7
3/	0,3029	0,1075	0,92003	1/39,/
30	0,29083	0,04808	0,95480	1740
40	0,23979	0,00908	0,90328	1741,0
40	0.28457	0,33373	0,92273	1730,4
41	0,20457	0,37023	0,88372	1736.2
42	0,32473	0,41823	0,64/04	1730,2
-+3	0,35425	0,07377	0.4650	1730,5
44	0,20993	0,84248	0.38210	1737,8
45	0,20031	0,00455	0,38217	1737,6
40	0,50047	0,91397	0,23790	1737,0
	0,13003	0,82678	0,442	1738.5
40	0,21277	0,02070	0,52115	1730,5
50	0,25507	0,71077	0,03010	1730,4
51	-0.00022	-0.00064	0,99912	1740,2
52	0.11827	0 22922	0,96663	1738,0
53	0.07835	0,22922	0,95575	1730,9
54	0,07055	0.04704	0,98672	1741 5
55	0,10745	0,04704	0,99687	1740,5
56	0.03143	0.36952	0 92974	1739.8
57	0,03113	0.40033	0.91474	1740
58	0.08444	0,10033	0 79488	1737.6
59	0.06298	0 64904	0 75902	1739.3
60	0.11286	0 78211	0.61101	1736.2
61	0.09803	0.77128	0.62715	1736.2
62	0.05498	0.90577	0.41882	1737.1
63	0.15813	0.96213	0.22027	1737.4
64	0.05138	0.97713	0.20672	1738.2
65	-0.0509	0,95904	0.27875	1738.1
66	-0,03777	0,95202	0,30211	1737,3
67	-0,17874	0,79892	0,57353	1737,4
68	-0,02044	0,81974	0,57137	1737,1
69	-0,18272	0,72484	0,66399	1737,8
70	-0,13075	0,68174	0,72035	1738,8
71	-0,0424	0,66726	0,74191	1735,9
72	-0,09884	0,47026	0,87628	1737
73	-0,02765	0,57012	0,82055	1737,3
74	-0,02271	0,52393	0,85121	1737,7
75	-0,14762	0,35946	0,92039	1736,5
76	-0,14612	0,1175	0,98217	1737,9
77	-0,02053	0,1567	0,98717	1737,6
78	-0,0811	0,21219	0,97492	1739,9
79	-0,13746	0,31458	0,93849	1736,9
80	-0,20545	0,29058	0,93375	1736,8
81	-0,24041	0,41973	0,87407	1736,3
82	-0,32702	0,69062	0,64399	1736,9
83	-0,1328	0,91177	0,38703	1737
84	-0,10643	0,9237	0,36578	1736,7
85	-0,20434	0,90063	0,38163	1736,8
86	-0,21805	0,89068	0,39604	1736,1

87	-0,12846	0,98029	0,14484	1736,8
88	-0,13007	0,98531	0,10929	1737,8
89	-0,29226	0,81271	0,50341	1737,5
90	-0,26529	0,77262	0,57473	1736
91	-0,30737	0,50562	0,80479	1736,2
92	-0,23141	0,5441	0,8062	1737,7
93	-0,32941	0,35135	0,87649	1738,3
94	-0,3391	0,22836	0,91302	1738,7
95	-0,26298	0,01658	0,96415	1737,2
96	-0,2046	0,05841	0,97699	1737,9
97	-0,46647	0,11287	0,87771	1738,7
98	-0,50967	0,0763	0,85581	1736,4
99	-0,07805	0,10355	0,99177	1738,5
100	-0,49555	0,17401	0,84989	1736,5
101	-0,52394	0,1611	0,83603	1737,6
102	-0,65059	0,08546	0,7546	1738,1
103	-0,60842	0,29334	0,7355	1735,7
104	-0,56124	0,35663	0,74567	1736,5
105	-0,52729	0,35366	0,77149	1736,6
106	-0,44741	0,3947	0,80297	1738,7
107	-0,43968	0,52456	0,72908	1738,1
108	-0,42776	0,56577	0,70412	1737,1
109	-0,5369	0,54249	0,64483	1736,7
110	-0,51519	0,66351	0,53776	1733,6
111	-0,48898	0,62372	0,6076	1735,8
112	-0,45124	0,7161	0,52961	1735,4
113	-0,45673	0,73789	0,49473	1736,2
114	-0,48547	0,73039	0,47738	1735,5
115	-0,4079	0,76996	0,48848	1736,2
116	-0,42362	0,85768	0,28821	1736,5
117	-0,5303	0,80222	0,27148	1736,8
118	-0,61955	0,74332	0,24436	1734,7
119	-0,6669	0,52635	0,52426	1735,2
120	-0,73385	0,36642	0,56958	1735,7
121	-0,7585	0,20621	0,61445	1734,1
122	-0,70231	0,21797	0,6766	1736,8
123	-0,81276	0,12043	0,56734	1735,5
124	-0,77915	0,08941	0,62005	1737,7
125	-0,73755	0,07589	0,66944	1736,3
126	-0,87445	0,18161	0,44623	1735,3
127	-0,87255	0,20235	0,44173	1735,9
128	-0,90627	0,19789	0,37192	1737,1
129	-0,85588	0,35929	0,37206	1738,1
130	-0,72032	0,57869	0,38044	1736,8
131	-0,68783	0,68766	0,22428	1734,9
132	-0,6988	0,55273	0,44858	1733,8
133	-0,84259	-0,01551	0,53606	1736
134	-0,84807	-0,09128	0,51949	1735,9
135	-0,74613	-0,2389	0,62178	1738,4
136	-0,78569	-0,33625	0,52013	1738,9

137	0,06429	-0,32957	0,94046	1735,7
138	-0,65858	-0,52326	0,54176	1739
139	-0,49314	-0,74924	0,44569	1740,9
140	-0,58541	-0,73335	0,34938	1740,3
141	-0,55073	-0,72949	0,40778	1739,6
142	-0,64257	-0,68889	0,33893	1740,1
143	-0,6248	-0,58202	0,5219	1739,4
144	-0,55513	-0,60047	0,57819	1740,7
145	-0,55382	-0,56148	0,61323	1736,4
146	-0,51047	-0,48714	0,70789	1737,2
147	-0,61636	-0,2677	0,74045	1738
148	-0,5331	-0,37358	0,75711	1735,5
149	-0,5436	-0,23067	0,80607	1736,8
150	-0,69659	-0,0783	0,7115	1736
151	-0,67503	-0,13682	0,72417	1737,1
152	-0,61177	-0,13093	0,77917	1736,8
153	-0,49445	-0,20382	0,84464	1737,6
154	0,18427	-0,05175	-0,98255	1739,9
155	-0,4376	-0,39482	0,80584	1735,3
156	-0,40171	-0,50924	0,7582	1734,2
157	-0,35646	-0,56916	0,74074	1737,8
158	-0,34858	-0,71939	0,60218	1739,5
159	-0,31958	-0,85376	0,40783	1735,8
160	-0,23349	-0,86865	0,43497	1736,6
161	-0,24679	-0,79819	0,54846	1737,1
162	-0,35002	-0,68849	0,63515	1738,1
163	-0,22201	-0,69721	0,68284	1739,5
164	-0,23246	-0,63865	0,73155	1735,6
165	-0,16272	-0,57559	0,80226	1739,3
166	-0,27789	-0,54727	0,78887	1737,3
167	-0,32743	-0,48084	0,81171	1735,7
168	-0,2939	-0,29245	0,9096	1737,5
169	-0,38683	-0,25164	0,88527	1735,2
170	-0,19655	-0,19995	0,9585	1735,8
171	-0,27169	-0,16495	0,94805	1737,9
172	-0,35614	-0,09485	0,92903	1737,2
173	-0,16936	-0,11503	0,97855	1737,6
174	-0,229	-0,02388	0,9728	1737,5
175	-0,09062	-0,05559	0,9936	1736,8
176	-0,13253	-0,26629	0,95346	1736
177	-0,11532	-0,26038	0,95807	1737,2
178	-0,20055	-0,37295	0,90493	1736,5
179	-0,07984	-0,36753	0,92572	1736,7
180	-0,07552	-0,45331	0,89015	1741,2
181	-0,04293	-0,61502	0,78849	1739,7
182	-0,00702	-0,69196	0,72161	1737,7
183	-0,14367	-0,7323	0,66706	1739,7
184	-0,11165	-0,85444	0,50504	1736
185	-0,16441	-0,84812	0,49969	1734,6
186	-0,13747	-0,78296	0,60789	1739,4

107	0 10021	0.02202	0.20095	1720.0
18/	-0,19021	-0,93202	0,30985	1/38,8
100	-0,12980	-0,89332	0,43100	1/39
109	-0,00003	-0,90137	0,45159	1/3/,2
190	-0,13410	-0,93179	0,20129	1730,3
191	0,08497	-0,90342	0,4184	1/30,/
192	0,13930	-0,81403	0,3031	1/5/,4
195	0,00557	-0,88408	0,40309	1740,3
194	0,14738	-0,78427	0,60131	1730,9
193	0,1209	-0,71808	0,08551	1733,9
190	0,13423	-0,39381	0,79300	1739,0
197	0,09904	-0,34097	0,8505	1737
190	0,13993	-0,4713	0,80890	1740,7
200	0,12725	-0,29203	0,94849	1739,4
200	0,11230	-0,2842	0,93389	1/41
201	0,12120	-0,04970	0.99138	1730,5
202	0,15521	-0,11912	0,98177	1740
203	0,20307	-0,01382	0,9033	1740,7
204	0,3705	-0,08508	0.94267	1733,0
205	0,32330	-0,0743	0,94207	1740
200	0,24478	-0,18172	0,94362	1730,7
207	0,17888	-0,28232	0,94302	1740 1
200	0,10307	0 40723	0,92171	1740,1
20)	0,25266	-0 59784	0 76229	1735,7
210	0,23200	-0,07792	0,7622	1740,1
211	0.24593	-0.67466	0,50015	1739.2
212	0,18659	-0.83033	0 52418	1737.3
213	0.2156	-0.89822	0 37985	1736
215	0.19762	-0.8819	0.4275	1737.7
215	0,17885	-0.94982	0.26219	1740.6
217	0.14327	-0.95696	0.25818	1740.7
218	0.21697	-0.95634	0.19831	1739
219	0.32408	-0.90254	0.28479	1738.7
220	0.39358	-0,77984	0.4872	1738.5
221	0.25985	-0.83034	0.49219	1737.4
222	0.29494	-0.67512	0.67604	1737.9
223	0,31265	-0,53066	0,79022	1741,4
224	0,39951	-0,51303	0,75889	1737
225	0,40817	-0,61954	0,66946	1736,9
226	0,47253	-0,4406	0,76261	1737,2
227	0,30461	-0,45943	0,83388	1737,4
228	0,41869	-0,39127	0,81838	1736,5
229	0,5404	-0,41331	0,73215	1737,1
230	0,54451	-0,30751	0,77962	1737,1
231	0,4268	-0,32086	0,8457	1738,4
232	0,48636	-0,19109	0,85354	1739,5
233	0,43733	-0,04695	0,89689	1736,3
234	0,74267	-0,0158	0,6663	1734,4
235	0,72086	-0,06252	0,68819	1735,6
236	0,79283	-0,09415	0,59841	1734,2

237	0,55811	-0,07441	0,82558	1736,9
238	0,54136	-0,13977	0,82853	1737,3
239	0,68888	-0,22045	0,68922	1736,5
240	0,71713	-0,38588	0,57636	1734,1
241	0,66316	-0,47405	0,57999	1738,9
242	0,56586	-0,54516	0,6196	1739,2
243	0,51081	-0,53692	0,67209	1738,9
244	0,38356	-0,71543	0,58438	1738,5
245	0,41167	-0,68434	0,60276	1739,1
246	0,55605	-0,70498	0,43892	1737,1
247	0,50965	-0,71671	0,47617	1738,2
248	0,48326	-0,79741	0,35966	1737
249	0,46875	-0,81187	0,34419	1735,8
250	0,70442	-0,57949	0,41197	1739,6
251	0,66368	-0,55147	0,50157	1734,8
252	0,63599	-0,57054	0,52184	1740,1
253	0,86447	-0,01689	0,49696	1733,4
254	0,94001	-0,13658	0,30699	1735,1
255	0,85815	-0,31754	0,40204	1737,1
256	0,95414	-0,18563	0,22771	1735,2

Каталог ARTHUR

№ точки	ξ в единицах	η в	ζв	радиус-вектор
В	среднего радиуса	единицах	единицах	кратера,
каталоге	1738.1 км	среднего	среднего	отсчитываем
		радиуса	радиуса	ый от центра
		1738.1 км	1738.1 км	масс Луны R
1	0,0061	0,02043	1,00019	1738,8
2	0,02514	0,02125	0,99904	1737,4
3	0,04209	0,05675	0,99809	1739,1
4	0,05463	0,90578	0,41627	1735,2
5	0,25438	0,87904	0,39813	1734,6
6	0,35373	0,05994	0,93168	1735,3
7	0,32441	0,41812	0,84725	1736,3
8	0,45672	0,58091	0,67229	1736,4
9	0,60977	0,35702	0,70664	1736,9
10	0,68649	0,45796	0,56377	1737,1
11	-0,09919	0,46967	0,87716	1738
12	-0,20889	0,03402	0,97599	1735,8
13	-0,32729	0,69027	0,64217	1734,6
14	-0,49573	0,17352	0,85135	1738,7
15	-0,46991	0,48537	0,73567	1736
16	-0,478	0,6119	0,62734	1735
17	-0,46983	0,79512	0,37912	1735,2
18	-0,51721	0,00306	0,85554	1737,6
19	-0,62882	0,50798	0,58565	1735
20	-0,65556	0,62344	0,42345	1736,1
21	-0,76087	0,03324	0,64617	1736

22	0,51988	0,09014	-0,84963	1738,3
23	-0,87229	0,20248	0,44153	1735,3
24	-0,15395	-0,95052	0,2616	1734,3
25	-0,24419	0,0265	0,96867	1736,9
26	-0,20058	-0,37307	0,9049	1736,6
27	-0,36866	-0,06998	0,92658	1737,5
28	-0,41513	-0,73272	0,5372	1736,2
29	-0,56003	-0,36786	0,74111	1736,5
30	-0,59868	-0,41425	0,68456	1736,9
31	-0,67248	-0,28784	0,68107	1737,2
32	-0,64242	-0,68829	0,33611	1737,6
33	-0,15389	-0,05542	0,98533	1736
34	-0,76823	-0,29576	0,56646	1736,8
35	-0,84774	-0,09109	0,51996	1735,8
36	-0,93389	-0,05072	0,35223	1737
37	0,05172	-0,03859	0,99797	1738,2
38	0,07894	-0,98103	0,17998	1739
39	0,29496	-0,6747	0,67491	1736,1
40	0,30843	-0,10652	0,94531	1738,2
41	0,36099	-0,48255	0,79877	1739,1
42	0,3241	-0,90175	0,28312	1736,7
43	0,40858	-0,01017	0,91116	1735,7
44	0,57627	-0,75699	0,30149	1734,6
45	0,61426	-0,29525	0,7296	1735,3
46	0,71433	-0,55253	0,42918	1737,9
47	0,86163	-0,09748	0,49652	1736,7
48	0,96944	-0,04486	0,23196	1734,3

Каталог Baldwin

№ точки	ξ в единицах	ηв	ζв	радиус-вектор
В	среднего радиуса	единицах	единицах	кратера,
каталоге	1738.1 км	среднего	среднего	отсчитываемый
		радиуса	радиуса	от центра масс
		1738.1 км	1738.1 км	Луны R
1	-0,19292	-0,90704	0,37692	1739,8
2	-0,28787	-0,90688	0,31547	1742,3
3	-0,32009	-0,90532	0,28473	1740,8
4	-0,35796	-0,92284	0,15162	1740,5
5	-0,35466	-0,91052	0,22171	1741,6
6	-0,3183	-0,85345	0,41551	1740,1
7	-0,36645	-0,83736	0,40707	1739,1
8	-0,39465	-0,84033	0,37582	1740,8
9	-0,38323	-0,82489	0,41838	1740,1
10	-0,32778	-0,77378	0,54421	1740,1
11	-0,29577	-0,84956	0,43948	1740,2
12	-0,34788	-0,71884	0,603	1739,3
13	-0,35429	-0,7376	0,57518	1738,4
14	-0,41449	-0,73336	0,53997	1739,1

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.7	0.42004	074540	0 50257	1720.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	-0,43894	-0,74549	0,50357	1/39,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	-0,48/93	-0,74303	0,46079	1/41
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/	-0,31094	-0,7000	0,03073	1/39,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	-0,34762	-0,70026	0,6241	1/38,/
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	-0,30/01	-0,70172	0,01207	1/40
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	-0,30344	-0,08479	0,03055	1/38,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	-0,43508	-0,68608	0,58278	1/3/,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	-0,4631	-0,64595	0,6085	1/39,8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	23	-0,435	-0,61487	0,65961	1740,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	-0,48/51	-0,62466	0,01381	1/42,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	-0,04098	-0,08903	0,3403	1/39,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	-0,58077	-0,73102	0,35032	1/3/,/
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27	-0,04895	-0,03057	0,41502	1/3/,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	28	-0,00044	-0,62439	0,41917	1/39,8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	29	-0,42784	-0,57822	0,09301	1/30,8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	-0,43378	-0,5255	0,73340	1/38,1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	-0,43720	-0,31392	0,7353	1/30,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	-0,43348	-0,51451	0,75078	1/34,2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24	-0,40145	-0,30943	0,76234	1/39,/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	-0,49071	-0,31783	0,09039	1/38,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	-0,3514	-0,3172	0,07337	1/41
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27	-0,3/111	-0,33031	0,02330	1740,4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	29	-0,31013	-0,48723	0,7038	1/34,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	-0,43077	-0,4378	0,78702	1/30
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	-0,03400	-0,40074	0,37720	1/30,/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	-0,09284	-0,47793	0,34004	1743,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	0,49702	-0,43373	0,74013	1731,0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	42	-0,46930	-0,43293	0,73271	1732,0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	43	-0,39621	-0,41437	0,08184	1733,4
4.5 $-0,3933$ $-0,40033$ $0,09310$ $1734,3$ 46 $-0,57543$ $-0,397$ $0,70987$ $1731,7$ 47 $-0,56823$ $-0,37323$ $0,73056$ $1734,5$ 48 $-0,55997$ $-0,36806$ $0,73988$ 1735 49 $-0,58072$ $-0,35629$ $0,72724$ $1732,1$ 50 $-0,533$ $-0,37361$ $0,75694$ $1735,2$ 51 $-0,66517$ $-0,38224$ $0,64065$ $1737,2$ 52 $-0,62187$ $-0,34778$ $0,69836$ $1734,1$ 53 $-0,69105$ $-0,32883$ $0,64337$ $1737,8$ 54 $-0,67259$ $-0,28768$ $0,68041$ $1736,4$ 55 $-0,46861$ $-0,7263$ $0,50851$ 1743 56 $-0,42573$ $-0,24384$ $0,86791$ $1732,8$ 57 $-0,50095$ $-0,2269$ $0,86338$ $1735,4$ 58 $-0,56587$ $-0,23855$ $0,78814$ $1736,6$ 59 $-0,68337$ $-0,25918$ $0,68521$ $1741,3$ 60 $-0,84566$ $-0,29033$ $0,45434$ $1743,2$ 61 $-0,49465$ $-0,20376$ $0,84422$ $1737,4$ 63 $-0,48924$ $-0,12858$ $0,86314$ $1738,9$ 64 $-0,56923$ $-0,11544$ $0,81216$ $1735,5$	44	-0,39313	-0,40002	0,08972	1731,9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	45	-0,39333	-0,40083	0,09310	1734,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	-0,37343	-0,397	0,70987	1731,7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	47	-0,50825	-0,37323	0,73088	1734,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	-0,33937	-0,30800	0,73788	1732 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49 50	-0,38072	-0,33029	0,72724	1732,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	-0,555	-0,37301	0,73074	1735,2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	52	-0,60317	-0,38224	0,04005	1737,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	53	-0,62107	-0,32883	0,64337	1737.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	54	-0 67259	-0.28768	0,64041	1736.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	-0.46861	-0.7263	0,50851	1743
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	56	-0.42573	-0 24384	0.86791	1732.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	57	-0 50095	-0 02769	0.86338	1735.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	58	-0 56587	-0.23855	0.78814	1736.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	59	-0 68337	-0.25918	0.68521	1730,0
61 -0,49465 -0,20376 0,84422 1737,2 62 -0,66168 -0,18518 0,72604 1737,4 63 -0,48924 -0,12858 0,86314 1738,9 64 -0,56923 -0,11544 0,81216 1735,5	60	-0.84566	-0.29033	0.45434	1743.2
62 -0,66168 -0,18518 0,72604 1737,4 63 -0,48924 -0,12858 0,86314 1738,9 64 -0,56923 -0,11544 0,81216 1735,5	61	-0.49465	-0.20376	0.84422	1737.2
63 -0,48924 -0,12858 0,86314 1738,9 64 -0,56923 -0,11544 0,81216 1735.5	62	-0.66168	-0.18518	0.72604	1737.4
64 -0,56923 -0,11544 0,81216 1735.5	63	-0.48924	-0,12858	0.86314	1738.9
, , , , , , , , , , , , , , , , , , , ,	64	-0.56923	-0,11544	0,81216	1735.5

65	0.612	0 12071	0 78045	1728 7
66	-0,012	-0,13071	0,78045	1733,7
67	-0,02081	-0,12502	0,70390	1735,0
68	-0,0754	-0,13078	0,72203	173,0
69	-0,65548	-0,09105	0,76751	1730
70	-0,03346	-0,00213	0,73001	1738 3
70	-0,000+0	-0,10278	0,71013	1735,3
71	-0 75307	-0.12317	0,60575	1733,3
72	-0,75507	-0,12317	0,04340	1737,1
73	-0.87783	-0.45106	0.16862	1740.2
75	-0.84209	-0.01459	0,10002	1737.6
76	-0 70447	-0.05536	0,70341	1733
70	-0.65229	-0.06024	0,76311	1733.8
78	-0.65026	-0.04025	0,75273	1730,3
70	-0 50909	-0.05234	0.85784	1736,2
80	-0.47119	-0.04336	0,88095	1738,1
81	-0 44842	-0.00575	0.89236	1735,9
82	-0.49197	-0.01102	0.86634	1731,7
83	-0.51797	0.0032	0.85819	1742.3
84	-0.59414	0.01157	0.80158	1734.3
85	-0.64525	0.00632	0.76286	1736.7
86	-0.49093	0.00872	0.87363	1741.8
87	-0.46965	0.00822	0.88357	1739.3
88	-0.58501	0.12443	0.79815	1733.5
89	-0.65011	0.08569	0.75539	1738.6
90	-0.71481	0.06923	0.6961	1738.4
91	-0,7237	0,08171	0,68407	1736,7
92	-0,73741	0,0765	0,67151	1738,6
93	-0,76096	0,03348	0,6474	1737,5
94	-0,78105	0,06157	0,62393	1740,8
95	-0,62399	0,14486	0,76648	1736,2
96	-0,49596	0,1739	0,84983	1736,7
97	-0,6573	0,17438	0,73378	1738,9
98	-0,70091	0,18316	0,68907	1737,8
99	-0,80616	0,15887	0,57104	1739,2
100	-0,70231	0,2185	0,67718	1737,7
101	-0,71076	0,23935	0,65659	1732,5
102	-0,77779	0,21024	0,59637	1742,3
103	-0,87385	0,18278	0,44953	1737,3
104	-0,87224	0,20343	0,44675	1739,6
105	-0,85549	0,24112	0,4577	1737,7
106	-0,79408	0,27431	0,54465	1740,2
107	-0,79665	0,28462	0,53275	1737,6
108	-0,63678	0,28989	0,71327	1736,6
109	-0,61256	0,29372	0,73093	1734,4
110	-0,48407	0,33574	0,80713	1736,8
111	-0,52271	0,36061	0,76891	1733,3
112	-0,52701	0,35397	0,77422	1740,2
113	-0,59229	0,36517	0,72137	1742
114	-0,62642	0,33854	0,70134	1737,1

115	-0,50847	0,41829	0,74966	1734,2
116	-0,52862	0,46344	0,715	1742,8
117	-0,46987	0,48624	0,73816	1739,9
118	-0,57558	0,49883	0,64505	1734,8
119	-0,62873	0,50891	0,58549	1735,6
120	-0,67611	0,40266	0,62414	1745,7
121	-0,80603	0,37589	0,46037	1740,6
122	-0,81261	0,39058	0,43311	1738,5
123	-0,68567	0,46665	0,55803	1737,5
124	-0,75775	0,48473	0,43852	1739,4
125	-0,70728	0,46215	0,53698	1740
126	-0,66666	0,52729	0,52697	1738,3
127	-0,53715	0,54308	0,64701	1739,9
128	-0,43961	0,52473	0,72881	1737,9
129	-0,42779	0,56608	0,70384	1737,1
130	-0,42929	0,60486	0,67315	1740,9
131	-0,5086	0,58305	0,63676	1741,6
132	-0,32742	0,69101	0,64068	1733,9
133	-0,45658	0,73882	0,49694	1739,2
134	-0,55712	0,66608	0,49632	1738,4
135	-0,66856	0,60542	0,43067	1737,2
136	-0,69061	0,60876	0,38842	1736,7
137	-0,54892	0,77408	0,31648	1738,7
138	-0,33847	0,7935	0,50498	1737,4
139	-0,40094	0,8248	0,40065	1739,5
140	-0,3842	0,83119	0,40373	1739,4
141	-0,37975	0,84388	0,38264	1740,5
142	-0,3537	0,85514	0,38407	1741,5
143	-0,43327	0,85164	0,3051	1743,4
144	-0,43245	0,8584	0,28528	1742,7
145	-0,27818	0,84172	0,46632	1741
146	-0,28879	0,88583	0,36844	1741,4
147	-0,10779	-0,91223	0,39955	1741,1
148	-0,03502	-0,88935	0,45756	1739,4
149	-0,00517	-0,90073	0,43721	1740,3
150	-0,03633	-0,86902	0,49754	1741,6
151	0,09293	-0,88358	0,46121	1739,9
152	0,08439	-0,84074	0,53799	1741,1
153	0,06226	-0,81369	0,57605	1736,2
154	0,02604	-0,90985	0,41521	1738,9
155	0,01718	-0,83718	0,54726	1738,7
156	-0,08615	-0,81371	0,57935	1742,6
157	-0,12993	-0,78985	0,60107	1739,9
158	-0,15861	-0,80109	0,58017	1741,1
159	-0,15555	-0,75173	0,6433	1740,8
160	-0,15322	-0,73802	0,65938	1740,6
161	-0,21987	-0,70471	0,67553	1739,2
162	-0,22131	-0,6971	0,68516	1741,9
163	0,06249	-0,79632	0,60403	1740,6
164	0,0564	-0,7728	0,63415	1740,3

165	0 09573	-0.80452	0 58688	1738.8
166	0.11321	-0.80252	0.58639	1738,7
167	0.14736	-0.82939	0.5398	1739
168	0.14086	-0.81383	0.56425	1738.6
169	0,14354	-0,77787	0,61203	1738,3
170	0,17498	-0,78428	0,59575	1738,6
171	0,11475	-0,73408	0,67113	1740,2
172	0,13861	-0,7156	0,68554	1739,2
173	0,03854	-0,71905	0,69517	1739,6
174	0,02256	-0,72943	0,68583	1740,7
175	-0,02961	-0,65017	0,75826	1736,8
176	-0,08273	-0,635	0,76914	1739,5
177	-0,1491	-0,63555	0,75876	1739,7
178	0,00106	0,00009	1,00049	1739
179	0,00124	0,00026	1,00043	1738,9
180	0,00106	0,00009	1,00043	1738,9
181	0,00106	0,00009	1,00043	1738,9
182	0,00082	0,00009	1,00049	1739
183	0,00082	0,00009	1,00049	1739
184	0,00082	0,00009	1,00049	1739
185	0,00082	0,00009	1,00049	1739
186	0,00064	0,00009	1,00049	1739
187	0,00082	0,00009	1,00049	1739
188	0,00073	-0,00009	1,00089	1739,6
189	0,00064	-0,00009	1,00054	1739
190	0,00073	-0,00009	1,00054	1739
191	0,00064	0,00009	1,00049	1739
192	0,00064	0,00009	1,00049	1739
193	0,00064	-0,00009	1,00054	1739
194	0,00064	0,00009	1,00049	1739
195	0,00073	-0,00009	1,00054	1739
196	0,0056	-0,00008	1,00053	1739,1
197	0,00082	0,00009	1,00049	1739
198	0,00073	-0,00009	1,00054	1/39
199	0,00098	-0,00009	1,00049	1/39
200	0,00098	-0,00009	1,00054	1/39
201	0,00098	-0,0009	1,00054	1/39
202	0,00098	0,00028	1,00034	1/39
203	0,00098	-0,0009	1,00054	1739
204	0,00073	-0,0009	1,00054	1739
205	0,00073	-0,0009	1,00054	1739
200	0,00073	-0,0000	1,00054	1739
207	0,00073	-0,00009	1,00054	1730
200	0,00073	-0,00009	1,00054	1739
207	0,00075	-0.00009	1,00054	1739
210	0 00064	-0.00009	1,00054	1739
212	0 00064	-0.00009	1,00054	1739
212	0 00064	-0.00009	1.00054	1739
213	0.00073	-0.00009	1.00054	1739
	, · -	,	,	

215	0.00064	0.00017	1 0006	1720.1
213	0,00064	-0,00017	1,0006	1/39,1
210	0,00098	-0,00009	1,00054	1739
217	0,00098	-0,00009	1,00054	1739
210	0,00098	-0,00009	1,00034	1739 1
219	0,00071	-0,00009	1,0000	1739,1
220	0,00071	-0,00003	1,00034	1739 1
221	0,0004	-0,00017	1,0000	1730,1
222	0,00073	-0,00003	1,00034	1739 1
223	0,0004	-0,00017	1,0000	1730,1
224	0,00056	-0,00017	1,00118	1740,2
225	0,00056	-0.00017	1,0006	1739,1
220	0,00056	-0.00017	1,0006	1739,1
227	0,00056	-0.00017	1,0000	1739.6
220	0,00056	-0.00017	1,00005	1739,0
22)	0,00050	-0.00017	1,0000	1735,1
230	0,00056	-0.00017	1,00201	1739.1
231	0,00064	-0.00017	1,0006	1739,1
232	0,00089	-0.00017	1,0006	1739.1
233	0.00089	-0.00026	1.00118	1740.2
235	0,00089	-0.00017	1,0006	1739.1
236	0.00064	-0.00017	1,0006	1739.1
237	0.00064	-0.00017	1,0006	1739.1
238	0.0015	-0.00017	1.0006	1739.1
239	0.00054	-0.00017	1.0006	1739,1
240	0.00064	-0.00017	1.0006	1739.1
241	0.00064	-0,00017	1,0006	1739,1
242	0.00064	-0,00017	1,0006	1739,1
243	0,00064	-0,00017	1,0006	1739,1
244	0,00064	-0,00017	1,0006	1739,1
245	0,00056	-0,00017	1,00118	1740,2
246	0,00064	-0,00017	1,0006	1739,1
247	0,00064	-0,00017	1,00146	1740,6
248	0,00056	-0,00017	1,0006	1739,1
249	0,00056	-0,00017	1,0006	1739,1
250	0,00056	-0,00026	1,00066	1739,2
251	0,00056	0,00157	1,00117	1740,1
252	0,00064	-0,00017	1,0006	1739,1
253	0,00064	0,00149	1,00146	1740,6
254	0,00054	-0,00026	1,00066	1739,2
255	0,00068	-0,00026	1,00089	1739,6
256	0,00089	-0,00026	1,00066	1739,3
257	0,00089	-0,00026	1,0006	1739,1
258	0,00089	-0,00017	1,0006	1739,1
259	0,00064	-0,00026	1,00066	1739,2
260	0,00064	-0,00026	1,00066	1739,2
261	0,00064	-0,00026	1,00066	1739,2
262	0,00056	-0,00026	1,00261	1742,6
263	0,00056	-0,00026	1,00066	1739,2
264	0,00056	-0,00026	1,00066	1739,2

0.45	0.00051	0.0000	1 000 6 6	1500.0
265	0,00064	-0,00026	1,00066	1739,2
266	0,00064	-0,00026	1,00204	1741,6
267	0,00064	-0,00026	1,00066	1739,2
268	0,00064	-0,00026	1,00089	1739,6
269	0,00064	-0,00026	1,00066	1739,2
270	0,00064	-0,00026	1,00204	1741,6
271	0,00064	-0,00026	1,00066	1739,2
272	0,00089	-0,00026	1,0006	1739,1
273	0,00064	-0,00026	1,00066	1739,2
274	0,00064	-0,00026	1,00066	1739,2
275	0,00064	-0,00026	1,00089	1739,6
276	0,00064	-0,00026	1,00066	1739,2
277	0,00063	-0,00026	1,00066	1739,2
278	0,00056	-0,00026	1,00066	1739,2
279	0,00056	-0,00026	1,00072	1739,4
280	0,00056	-0,00026	1,00118	1740,2
281	0,00056	0,00096	1,00072	1739,4
282	0,00063	0,00096	1,00066	1739,3
283	0,00063	-0,00026	1,00089	1739,6
284	0,00063	0,00096	1,00146	1740,6
285	0,00063	-0,00026	1,00066	1739,2
286	0,00063	-0,00026	1,00066	1739,2
287	0,00063	-0,00026	1,00066	1739,2
288	0,00089	-0,00026	1,0006	1739,1
289	0,00089	-0,00026	1,00066	1739,3
290	0,00064	-0,00026	1,00066	1739,2
291	0,00063	-0,00026	1,00066	1739,2
292	0,00063	-0,00026	1,00077	1739,4
293	0,00056	-0,00026	1,00072	1739,4
294	0,00063	-0,00026	1,00066	1739,2
295	0,00056	-0,00026	1,00072	1739,4
296	0,00056	-0,00026	1,00118	1740,2
297	0,00063	-0,00026	1,00066	1739,2
298	0,00063	-0,00026	1,00066	1739,2
299	0,00063	-0,00026	1,00066	1739,2
300	0,00089	-0,00026	1,0006	1739,1
301	0,00063	-0,00026	1,00066	1739,2
302	0,01137	-0,00025	1,00054	1739,2
303	0,00089	-0,00026	1,0006	1739,1
304	0,00063	-0,00026	1,00066	1739,2
305	0,00063	-0,00026	1,00066	1739,2
306	0,00063	-0,00026	1,00066	1739,2
307	0,00063	-0,00026	1,00066	1739,2
308	0,00064	-0,00026	1,00066	1739,2
309	0,00064	-0,00026	1,00066	1739,2
310	0,00064	-0,00026	1,00066	1739,2
311	0,00056	0,01023	1,0017	1741,1
312	0,00056	-0,00026	1,00146	1740,6
313	0,00056	-0,00026	1,00204	1741,6
314	0,00056	0,01022	1,00061	1739,2
215	0.00056	0.00026	1.00077	1720.2
------	---------	----------	---------	--------
315	0,00056	-0,00026	1,00066	1/39,2
217	0,00056	-0,00026	1,00066	1/39,2
219	0,00056	-0,00026	1,00066	1/39,2
210	0,00064	-0,00026	1,00060	1/39,2
220	0,00089	-0,00026	1,0006	1/39,1
320	0,00089	-0,00026	1,0006	1/39,1
321	0,00089	-0,00026	1,0006	1/39,1
322	0,00096	0,01022	1,00059	1/39,2
323	0,00089	-0,00026	1,0006	1/39,1
324	0,00064	-0,00026	1,00066	1/39,2
323	0,00064	-0,00026	1,00066	1/39,2
320	0,00064	-0,00026	1,00066	1/39,2
229	0,00064	-0,00026	1,00066	1/39,2
328	0,00064	-0,00026	1,00066	1/39,2
220	0,00056	-0,00020	1,0006	1/39,2
221	0,00056	-0,00017	1,0000	1/39,1
222	0,00036	-0,00020	1,00089	1/39,0
332	0,00036	-0,00017	1,00089	1/39,0
333	0,00064	-0,00026	1,00089	1/39,0
225	0,00050	-0,00020	1,00089	1739,0
226	0,00064	-0,00017	1,0000	1739,1
227	0,00064	-0,00017	1,00116	1740,2
229	0,0004	-0,00017	1,0000	1739,1
330	0,00089	-0,00017	1,00118	1740,2
339	0,00089	-0,00017	1,00034	1739
340	0,00089	-0,00020	1,00089	1739,0
341	0,00089	-0,00020	1,0000	1739,1
342	0,00089	-0,00020	1,0000	1739,1
343	0,00089	-0,00017	1,0000	1739,1
3/15	0,0006/	-0,00017	1,0006	1739,1
346	0,00064	-0,00017	1,0006	1739,1
347	0,0004	-0,00017	1,0000	1739
348	0,00064	-0.00017	1,00054	1739.1
340	0,00064	-0.00017	1,0006	1739,1
350	0,00064	-0.00017	1,0000	1735,1
350	0,00064	-0.00026	1,00175	1739.2
352	0,00056	-0.00017	1,0006	1739,1
352	0,00056	-0.00017	1,00066	1739.2
354	0,00056	-0.00017	1,0006	1739,1
355	0,00056	-0.00017	1,0006	1739,1
356	0,00056	-0.00017	1,0006	1739,1
357	0.00089	-0.00017	1,00054	1739
358	0.00098	-0.00008	1.00261	1742.6
359	0.00089	-0.00017	1.00054	1739
360	0.00089	-0.00017	1.00054	1739
361	0.00098	-0,00009	1,00054	1739
362	0.00064	-0.00017	1.0006	1739.1
363	0.00064	-0.00017	1.00089	1739.6
364	0,00064	-0,00009	1,00054	1739

365	0,00073	-0,00009	1,00054	1739
366	0,00073	-0,00009	1,00054	1739
367	0,00073	-0,00009	1,00054	1739
368	0,00073	-0,00009	1,00054	1739
369	0,00073	-0,00009	1,00054	1739
370	0,00073	-0,00009	1,00089	1739,6
371	0,00098	-0,00009	1,00054	1739
372	0,00098	-0,00008	1,00261	1742,6
373	0,00098	-0,00009	1,00054	1739
374	0,00098	-0,00009	1,00054	1739
375	0,00098	-0,00009	1,00054	1739
376	0,00098	0,00026	1,0006	1739,1
377	0,00098	-0,00009	1,0006	1739,1
378	0,00098	-0,00009	1,00054	1739
379	0,00098	0,00026	1,00054	1739
380	0,00073	-0,00009	1,00054	1739
381	0,00073	-0,00009	1,00054	1739
382	0,00073	-0,00009	1,00054	1739
383	0,00073	-0,00009	1,00054	1739
384	0,00064	-0,00009	1,00054	1739
385	0,00064	-0,00009	1,00054	1739
386	0,00082	0,00009	1,00049	1739
387	0,00082	0,00009	1,00049	1739
388	0,00064	0,00009	1,00049	1739
389	0,00064	0,00009	1,00049	1739
390	0,00064	0,00009	1,00049	1739
391	0,00064	0,00009	1,00049	1739
392	0,00065	0,00009	1,00261	1742,6
393	0,00064	0,00009	1,00049	1739
394	0,00064	0,00009	1,00049	1739
395	0,00082	0,00009	1,00049	1739
396	0,00082	0,00009	1,00049	1739
397	0,00082	0,00009	1,00049	1739
398	0,00106	0,00009	1,00043	1738,9
399	0,00124	0,00026	1,00043	1738,9
400	0,00159	0,00027	1,00043	1738,9
401	0,00082	0,00009	1,00049	1739
402	0,00091	0,00026	1,00043	1738,9
403	0,00091	0,00026	1,00043	1738,9
404	0,00073	0,00026	1,00043	1738,9
405	0,00073	0,00026	1,00043	1738,9
406	0,00091	0,00026	1,00043	1738,9
407	0,00126	0,00026	1,00043	1738,9
408	0,00126	0,00026	1,00043	1738,9
409	0,00126	0,00026	1,00043	1738,9
410	0,00126	0,00044	1,00043	1738,9
411	0,00126	0,00026	1,00043	1738,9
412	0,00091	0,00026	1,00043	1738,9
413	0,00091	0,00026	1,00043	1738,9
414	0,00091	0,00053	1,00037	1738,7

r				
415	0,00073	0,00026	1,00043	1738,9
416	0,00159	0,00054	1,00037	1738,7
417	0,00159	0,00054	1,00037	1738,7
418	0,0016	0,00054	1,00037	1738,7
419	0,0023	0,00115	1,00031	1738,6
420	0,00143	0,00115	1,00031	1738,6
421	0,00145	0,00115	1,00031	1738,6
422	0,00143	0,00115	1,00031	1738,6
423	0,00298	0,00115	1,00031	1738,7
424	0,00333	0,00054	1,00037	1738,8
425	0,00264	0,00054	1,00037	1738,8
426	0,00264	0,00054	1,00037	1738,8
427	0,00264	0,00054	1,00037	1738,8
428	0,00211	0,00054	1,00037	1738,8
429	0,00211	0,00054	1,00037	1738,8
430	0,00211	0,00054	1,00037	1738,8
431	0,00159	0,00054	1,00037	1738,7
432	0,00159	0,00054	1,00037	1738,7
433	0,00159	0,00054	1,00037	1738,7
434	0,0016	0,00054	1,00037	1738,7
435	0,0016	0,00054	1,00037	1738,7
436	0,00333	0,00054	1,00037	1738,8
437	0,00255	0,00027	1,00037	1738,8
438	0,00333	0,00054	1,00037	1738,8
439	0,00333	0,00054	1,00037	1738,8
440	0,00211	0,00027	1,00043	1738,9
441	0,00159	0,00027	1,00043	1738,9
442	0,00159	0,00027	1,00043	1738,9
443	0,00124	0,00026	1,00043	1738,9
444	0,00307	0,00027	1,00037	1738,8
445	0,00307	0,00027	1,00037	1738,8
446	0,00307	0,00027	1,00037	1738,8
447	0,00307	0,00027	1,00037	1738,8
448	0,00255	0,00027	1,00037	1738,8
449	0,00211	0,00027	1,00043	1738,9
450	0,00211	0,00026	1,00089	1739,7
451	0,00159	0,00027	1,00043	1738,9
452	0,00141	0,00009	1,00049	1739
453	0,00159	0,00027	1,00043	1738,9
454	0,00124	0,00026	1,00043	1738,9
455	0,00124	0,00026	1,00043	1738,9
456	0,00124	0,00026	1,00043	1738,9
457	0,00124	0,00026	1,00043	1738,9
458	0,00386	0,00027	1,00037	1738,8
459	0,00229	0,0001	1,00043	1738,9
460	0,00229	0,0001	1,00043	1738,9
461	0,00255	0,00027	1,00037	1738,8
462	0,00255	0,00027	1,00037	1738,8
463	0,00176	0,0001	1,00043	1738,9
464	0,00141	0,00009	1,00043	1738,9

1.55	0.00026	0.00000	1 000 12	1720.0
465	0,00036	0,00009	1,00043	1738,8
466	0,00141	0,00009	1,00043	1738,9
467	0,00106	0,00009	1,00043	1738,9
468	0,00106	0,00009	1,00043	1738,9
469	0,00229	0,0001	1,00089	1739,7
470	0,00229	0,0001	1,00043	1738,9
471	0,00176	0,0001	1,00043	1738,9
472	0,00176	0,0001	1,00043	1738,9
473	0,00176	0,0001	1,00043	1738,9
474	0,00141	0,00009	1,00043	1738,9
475	0,00141	0,00009	1,00043	1738,9
476	0,00141	0,00009	1,00043	1738,9
477	0,00106	0,00009	1,00043	1738,9
478	0,00106	0,00009	1,00043	1738,9
479	0,00106	0,00009	1,00043	1738,9
480	0,00202	-0,00009	1,00089	1739,7
481	0,00202	-0,00008	1,00043	1738,9
482	0,00159	-0,00008	1,00043	1738,9
483	0,00159	-0,00008	1,00043	1738,9
484	0,00159	-0,00008	1,00043	1738,9
485	0,00133	-0,00009	1,00049	1739
486	0,00133	-0,00009	1,00049	1739
487	0,00133	-0,00009	1,00049	1739
488	0,00098	-0,00009	1,00054	1739
489	0,00098	-0,00009	1,00054	1739
490	0,00098	-0,00009	1,00054	1739
491	0,00159	-0,00008	1,00049	1739
492	0,00159	-0,00008	1,00043	1738,9
493	0,00159	-0,00009	1,00089	1739,7
494	0,00133	-0,00009	1,00049	1739
495	0,00133	-0,00009	1,00049	1739
496	0,00124	-0,00017	1,00049	1739
497	0,00133	-0,00009	1,00049	1739
498	0,00133	-0,00009	1,00049	1739
499	0,00133	-0,00009	1,00049	1739
500	0,00124	-0,00017	1,00054	1739
501	0,00133	-0,00009	1,00049	1739
502	0,00098	-0,00009	1,00054	1739
503	0,00185	-0,00016	1,00043	1738,9
504	0,00185	-0,00016	1,00049	1739
505	0,00185	-0,00016	1,00043	1738,9
506	0,0015	-0,00017	1,00049	1739
507	0,00124	-0,00017	1,00054	1739
508	0,00089	-0,00017	1,00054	1739
509	0,00089	-0,00017	1,00054	1739
510	0,00089	-0,00017	1,00054	1739
511	0,00185	-0,00016	1,00049	1739
512	0,00045	-0,00017	1,00049	1739
513	0,0015	-0,00017	1,00049	1739
514	0,0015	-0,00017	1,00049	1739

	0.00101	0.00015	1 00000	1520 5
515	0,00124	-0,00017	1,00089	1739,7
516	0,00124	-0,00017	1,00054	1739
517	0,00124	-0,00017	1,00118	1740,2
518	0,00124	-0,00017	1,00054	1739
519	0,00124	-0,00017	1,00089	1739,7
520	0,00124	-0,00017	1,00054	1739
521	0,00124	-0,00017	1,00054	1739
522	0,00089	-0,00017	1,00054	1739
523	0,00089	-0,00026	1,0006	1739,1
524	0,00089	-0,00026	1,00175	1741,1
525	0,0022	-0,00016	1,00043	1738,9
526	0,00185	-0,00016	1,00043	1738,9
527	0,00141	-0,00024	1,00054	1739
528	0,00115	-0,00026	1,00054	1739
529	0,00115	-0,00026	1,00054	1739
530	0,00115	-0,00026	1,00054	1739
531	0,00211	-0,00023	1,00049	1739
532	0,00176	-0,00023	1,00049	1739
533	0,00176	-0,00023	1,00049	1739
534	0,00141	-0,00024	1,00054	1739
535	0,00141	-0,00024	1,00054	1739
536	0,00141	-0,00024	1,00054	1739
537	0,00115	-0,00026	1,00089	1739,7
538	0,00115	-0,00026	1,00054	1739
539	0,00089	-0,00026	1,0006	1739,1
540	0,00089	-0,00026	1,0006	1739,1
541	0,00211	-0,00023	1,00049	1739
542	0,00176	-0,00023	1,00049	1739
543	0,00176	-0,00023	1,00049	1739
544	0,00176	-0,00023	1,00054	1739
545	0,00176	-0,00023	1,00054	1739
546	0,00141	-0,00024	1,00054	1739
547	0,00141	-0,00024	1,00054	1739
548	0,00141	-0,00024	1,00054	1739
549	0,00141	-0,00024	1,00054	1739
550	0,00141	-0,00024	1,00054	1739
551	0,00036	-0,00026	1,00054	1739
552	0,00115	-0,00026	1,00054	1739
553	0,00115	-0,00026	1,00054	1739
554	0,00115	-0,00026	1,00054	1739
555	0,00115	-0,00026	1,00054	1739
556	0,00115	-0,00026	1,00054	1739
557	0,00115	-0,00026	1,00054	1739
558	0,00115	-0,00026	1,0006	1739,1
559	0,00115	-0,00026	1,0006	1739,1
560	0,00115	-0,00026	1,0006	1739,1
561	0,00115	-0,00026	1,0006	1739,1
562	0,00089	-0,00026	1,0006	1739,1
563	0,00089	-0,00026	1,0006	1739,1
564	0,00089	-0,00026	1,0006	1739,1

565	0.00211	0.00022	1 00040	1720
566	0,00211	-0,00023	1,00049	1730 4
567	0,70081	-0.00023	1 000/19	1739,4
568	0,00211	-0,00023	1,00049	1739
560	0,00176	-0,00023	1,00049	1739
570	0,00176	-0,00023	1,00049	1739
571	0,00176	-0,00023	1,00054	1739
572	0,00176	-0,00023	1,00054	1739
572	0,00176	-0,00023	1,00054	1739
573	0,00176	-0,00023	1,00054	1739
575	0,001/0	-0,00023	1,00054	1739
576	0,00141	-0,00024	1,00054	1739
577	0,00141	-0,00024	1,00054	1739
578	0,00141	-0,00024	1,00054	1730 1
570	0,00115	-0,00020	1,0000	1739,1
580	0,00113	-0,00020	1,0000	1739,1
581	0,00089	-0,00020	1,0000	1739,1
582	0,00089	-0,00020	1,0000	1739,1
583	0,00211	-0,00023	1,00049	1739
584	0,00176	-0,00023	1,00049	1739
585	0,00176	-0,00023	1,00049	1739
586	0,00176	-0,00023	1,00054	1739
587	0,00170	-0,00023	1,00054	1739
588	0,00141	-0.00024	1,00054	1739
589	0,00141	-0.00024	1,00054	1739
590	0.00141	-0.00024	1,00054	1739
591	0.00115	-0.00026	1,00089	1739.7
592	0.00115	-0.00026	1,00054	1739
593	0.00115	-0.00026	1,00054	1739
594	0.00115	-0.00026	1,0006	1739.1
595	0.00211	-0.00023	1.00049	1739
596	0.00211	-0.00023	1.00049	1739
597	0.00176	-0.00023	1.00049	1739
598	0.00176	-0.00023	1.00054	1739
599	0.00141	-0.00024	1.00054	1739
600	0.00141	-0.00024	1.00054	1739
601	0.00115	-0,00026	1,00054	1739
602	0,00115	-0,00026	1,00054	1739
603	0,00115	-0,00026	1,00054	1739
604	0,00115	-0,00026	1,00054	1739
605	0,00115	-0,00026	1,00054	1739
606	0,00115	-0,00026	1,00054	1739
607	0,00089	-0,00026	1,0006	1739,1
608	0,00089	-0,00026	1,0006	1739,1
609	0,00089	-0,00026	1,0006	1739,1
610	0,00089	-0,00026	1,0006	1739,1
611	0,00089	-0,00026	1,0006	1739,1
612	0,00211	-0,00023	1,00049	1739
613	0,00211	-0,00023	1,00049	1739
614	0,00211	-0,00023	1,00049	1739

(15	0.00211	0.00022	1 000 10	1720
615	0,00211	-0,00023	1,00049	1739
616	0,00211	-0,00023	1,00049	1739
617	0,00211	-0,00023	1,00049	1739
618	0,00211	-0,00023	1,00049	1739
619	0,00211	-0,00023	1,00049	1739
620	0,00211	-0,00023	1,00049	1739
621	0,00176	-0,00023	1,00049	1739
622	0,00141	-0,00024	1,00054	1739
623	0,00141	-0,00024	1,00054	1739
624	0,00141	-0,00024	1,00054	1739
625	0,00185	-0,00016	1,00049	1739
626	0,00185	-0,00016	1,00049	1739
627	0,0015	-0,00017	1,00049	1739
628	0,00141	-0,00024	1,00118	1740,2
629	0,00115	-0,00026	1,00054	1739
630	0,1577	-0,0002	0,98807	1739,1
631	0,00115	-0,00026	1,00054	1739
632	0,00115	-0,00026	1,00054	1739
633	0,00115	-0,00026	1,00054	1739
634	0,00124	-0,00017	1,00054	1739
635	0,00124	-0,00017	1,00054	1739
636	0,00089	-0,00026	1,0006	1739,1
637	0,00089	-0,00026	1,0006	1739,1
638	0,0022	-0,00016	1,00043	1738,9
639	0,00185	-0,00016	1,00043	1738,9
640	0,0015	-0,00017	1,00049	1739
641	0,0015	-0,00017	1,00049	1739
642	0,00124	-0,00017	1,00054	1739
643	0,00124	-0,00017	1,00054	1739
644	0,00124	-0,00017	1,00089	1739,7
645	0,0022	-0,00016	1,00043	1738,9
646	0,0022	-0,00016	1,00043	1738,9
647	0,0022	-0,00016	1,00043	1738,9
648	0,0015	-0,00017	1,00049	1739
649	0,00124	-0,00017	1,00054	1739
650	0,0015	-0,00017	1,00049	1739
651	0,00133	-0,00009	1,00049	1739
652	0,00133	-0,00009	1,00049	1739
653	0,00133	-0,00009	1,00054	1739
654	0,00237	-0,00008	1,00043	1738,9
655	0,00202	-0,00008	1,00043	1738,9
656	0,00202	-0,00008	1,00043	1738,9
657	0,00202	-0,00008	1,00043	1738,9
658	0,00159	-0,00008	1,00043	1738,9
659	0,00133	-0,00009	1,00049	1739
660	0,00133	-0,00009	1,00049	1739
661	0,00098	-0,00009	1,00054	1739
662	0,00106	0,00009	1,00089	1739,7
663	0,00176	0,0001	1,00043	1738,9
664	0,00176	0,0001	1,00043	1738,9

665	0.00176	0.0001	1 00042	1729.0
005	0,00176	0,0001	1,00043	1/38,9
666	0,00141	0,00009	1,00049	1739
667	0,00141	0,00009	1,00043	1738,9
668	0,00141	0,00009	1,00049	1739
669	0,00333	0,0001	1,00042	1738,8
670	0,00229	0,0001	1,00089	1739,7
671	0,00272	0,0001	1,00043	1738,9
672	0,00229	0,0001	1,00043	1738,9
673	0,00176	0,0001	1,00043	1738,9
674	0,00176	0,0001	1,00043	1738,9
675	0,00176	0,0001	1,00043	1738,9
676	0,00141	0,00009	1,0006	1739,1
677	0,00106	0,00009	1,00049	1739
678	0,00106	0,00009	1,00043	1738,9
679	0,00106	0,00009	1,00043	1738,9
680	0,00255	0,00027	1,00037	1738,8
681	0,00211	0,00027	1,00043	1738,9
682	0,00159	0,00027	1,00043	1738,9
683	0,00159	0,00027	1,00043	1738,9
684	0,00159	0,00027	1,00043	1738,9
685	0,00159	0,00027	1,00043	1738,9
686	0,00159	0,00027	1,00043	1738,9
687	0,00211	0,00054	1,00037	1738,8
688	0,00211	0,00054	1,00037	1738,8
689	0,00211	0,00054	1,00037	1738,8
690	0,00211	0,00053	1,00089	1739,7
691	0,00211	0,00054	1,00037	1738,8
692	0,00211	0,00054	1,00037	1738,8
693	0,00333	0,00054	1,00037	1738,8
694	0,00368	0,00115	1,00036	1738,7
695	0,00298	0,00115	1,00037	1738,8
696	0,00298	0,00115	1,00031	1738,7

Каталог Goloseevo-1

№ точки	ξ в единицах	η в	ζВ	радиус-вектор
В	среднего радиуса	единицах	единицах	кратера,
каталоге	1738.1 км	среднего	среднего	отсчитываемый
		радиуса	радиуса	от центра масс
		1738.1 км	1738.1 км	Луны R
1	0,0058	0,02059	1	1738,5
2	0,01884	0,06987	0,99916	1741,2
3	0,06231	0,07317	0,99309	1734,2
4	0,08951	0,0306	0,99538	1737,9
5	0,02325	0,13433	0,99021	1737,3
6	0,07137	0,40087	0,9163	1742,8
7	0,05453	0,90631	0,41681	1736,4
8	0,11805	0,02839	0,99002	1733,6
9	-0,00035	-0,00062	0,9993	1736,9

11 0.1798 0.46455 0.86795 1739.4 12 0.09949 0.66504 0.73835 1735.8 13 0.11186 0.78213 0.6122 1737.3 14 0.2593 0.06895 0.96106 1734.3 15 0.29664 0.04883 0.95386 1738.3 16 0.21495 0.10805 0.97008 1737.2 17 0.2263 0.12108 0.9644 1734.6 18 0.28373 0.36957 0.87928 1729.6 19 0.23812 0.71654 0.65443 1735.1 20 0.34028 0.07959 0.9351 1735.1 21 0.31327 0.135 0.93868 1735.9 22 0.33692 0.18197 0.92549 1740.8 23 0.31377 0.28533 0.90368 1735.3 24 0.33734 0.26224 0.90191 1730.5 25 0.38363 0.26321 0.88035 1730.7 26 0.32381 0.41779 0.84815 1737.1 27 0.36415 0.88026 0.30616 1739.1 28 0.44051 0.18526 0.87733 1736.4 29 0.42267 0.29538 0.85736 1738.9 30 0.41696 0.52494 0.74027 1735.9 31 0.43343 0.72332 0.51963 1735.3 36 0.65303 0.23081 0.71994 1736.4 29 0.42267 0.295	10	0,18278	0,15923	0,96914	1736,4
12 $0,09949$ $0,66504$ $0,73835$ $1735,8$ 13 $0,11186$ $0,78213$ $0,6122$ $1737,3$ 14 $0,2593$ $0,06895$ $0,96106$ $1734,3$ 15 $0,29664$ $0,04883$ $0,95386$ $1738,3$ 16 $0,21495$ $0,10805$ $0,97008$ $1737,2$ 17 $0,2263$ $0,12108$ $0,9644$ $1734,6$ 18 $0,22373$ $0,36957$ $0,87928$ $1729,6$ 19 $0,23812$ $0,71654$ $0,65443$ $1735,7$ 20 $0,34028$ $0,07959$ $0,9351$ $1735,1$ 21 $0,31327$ $0,135$ $0,93868$ $1735,3$ 22 $0,33692$ $0,18197$ $0,92549$ $1740,8$ 23 $0,31377$ $0,28583$ $0,90368$ $1735,3$ 24 $0,33734$ $0,25294$ $0,90191$ $1730,5$ 25 $0,38363$ $0,2621$ $0,88035$ $1730,7$ 26 $0,32381$ $0,41779$ $0,88415$ 1737 27 $0,36415$ $0,88026$ $0,30616$ $1739,1$ 28 $0,44051$ $0,18526$ $0,87733$ $1736,4$ 29 $0,42267$ $0,29338$ $0,85736$ $1738,9$ 30 $0,41696$ $0,52494$ $0,74027$ $1735,9$ 31 $0,43343$ $0,7232$ $0,53192$ $1732,9$ 32 $0,4549$ $0,31266$ $0,71663$ $1735,3$ 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,60766$ $0,23286$ <	11	0,1798	0,46455	0,86795	1739,4
13 $0,11186$ $0,78213$ $0,6122$ $1737,3$ 14 0.2593 $0,06895$ 0.96106 $1734,3$ 15 0.29664 $0,04833$ 0.95386 $1738,3$ 16 0.21495 $0,10805$ 0.97008 $1737,2$ 17 0.2263 $0,12108$ 0.9644 $1734,6$ 18 0.23812 $0,71654$ $0,65443$ $1735,1$ 20 0.34028 $0,07959$ 0.9351 $1735,1$ 21 0.31327 0.135 0.93868 $1735,9$ 22 0.33692 $0,18197$ 0.92549 $1740,8$ 23 0.31377 0.25534 0.90368 $1735,3$ 24 0.33734 0.25294 0.90191 $1730,5$ 25 0.38363 0.26321 0.88035 $1730,7$ 26 0.32381 $0,41779$ 0.84815 $1737,3$ 27 0.36415 0.88026 0.30616 $1739,1$ 28 0.44051 0.18526 0.87733 $1736,4$ 29 0.42267 0.29538 0.8736 $1738,9$ 30 0.41696 0.52494 0.74027 $1735,9$ 31 0.43343 0.7232 0.53192 $1732,9$ 32 0.4549 0.83126 0.31702 $1735,3$ 36 0.65531 0.7184 $1736,3$ 37 0.60953 0.33448 0.71892 $1738,3$ 38 0.60976 0.32659 0.70862 $1739,1$ 39 0.64814 0.45974 0.60769	12	0.09949	0,66504	0,73835	1735,8
14 0.2593 0.06895 0.96106 $1734,3$ 15 0.29664 0.04883 0.95386 $1738,3$ 16 0.21495 0.10805 0.97008 $1737,2$ 17 0.2263 0.12108 0.9644 $1734,6$ 18 0.28373 0.36957 0.87928 $1729,6$ 19 0.23812 0.71654 0.65443 $1735,1$ 20 0.34028 0.07959 0.9351 $1735,1$ 21 0.31327 0.135 0.93868 $1735,3$ 22 0.33692 0.18197 0.92549 $1740,8$ 23 0.31377 0.28583 0.90368 $1735,3$ 24 0.33734 0.25294 0.90191 $1730,5$ 25 0.38363 0.26321 0.88035 $1730,7$ 26 0.32381 0.41779 0.84815 17337 27 0.36415 0.88026 0.30616 $1739,1$ 28 0.44051 0.18526 0.37733 $1736,4$ 29 0.42267 0.29538 0.85736 $1738,9$ 30 0.41696 0.52494 0.74027 $1735,9$ 31 0.43343 0.7232 0.53192 $1732,9$ 32 0.4549 0.8126 0.31702 $1736,3$ 35 0.54513 0.65544 0.71984 $1735,3$ 36 0.65534 0.71984 $1735,3$ 37 0.60953 0.33448 0.71892 $1738,7$ 44 0.75766 0.12562 0.64556	13	0,11186	0,78213	0,6122	1737,3
15 0.29664 0.04883 0.95386 1738.3 16 0.21495 0.10805 0.97008 1737.2 17 0.2263 0.12108 0.9644 1734.6 18 0.28373 0.36957 0.87928 1729.6 19 0.23812 0.71654 0.65443 1735.1 20 0.34028 0.07959 0.9351 1735.1 21 0.31327 0.135 0.93868 1735.3 22 0.33692 0.18197 0.92549 1740.8 23 0.31377 0.28583 0.90368 1735.3 24 0.33734 0.25294 0.90191 1730.5 25 0.33836 0.26321 0.88035 1730.7 26 0.32381 0.41779 0.84815 1737.7 27 0.36415 0.88026 0.30616 1739.1 28 0.44051 0.18526 0.87733 1736.4 29 0.42267 0.29538 0.85736 1738.7 31 0.43343 0.72332 0.53192 1732.9 32 0.4549 0.8126 0.31702 1735.9 33 0.52852 0.30441 0.7199 1737.4 34 0.50801 0.60238 0.61557 1738.7 35 0.54513 0.65544 0.71892 1738.7 36 0.60953 0.33448 0.71892 1738.7 37 0.60953 0.33448 0.71892 1738.7 36 0.60976 0.356	14	0,2593	0,06895	0,96106	1734,3
16 0.21495 0.10805 0.97008 $1737,2$ 17 0.2263 0.12108 0.9644 $1734,6$ 18 0.28373 0.36957 0.87928 $1729,6$ 19 0.23812 0.71654 0.65443 $1735,1$ 20 0.34028 0.07959 0.9351 $1735,1$ 21 0.31327 0.135 0.93868 $1735,9$ 22 0.33692 0.18197 0.92549 $1740,8$ 23 0.33734 0.25294 0.90191 $1730,5$ 25 0.338363 0.26321 0.88035 $1730,7$ 26 0.32381 0.41779 0.84815 $1737,7$ 27 0.36415 0.88026 0.30616 $1739,1$ 28 0.44051 0.18526 0.87733 $1736,4$ 29 0.42267 0.29538 0.85736 $1738,9$ 30 0.41696 0.52494 0.74027 $1735,9$ 31 0.43343 0.7232 0.53192 $1732,9$ 32 0.4549 0.83126 0.31702 $1736,7$ 33 0.52852 0.30441 0.71999 $1737,4$ 34 0.50801 0.60238 0.61557 $1738,3$ 35 0.54513 0.65544 0.51963 $1735,3$ 36 0.65303 0.23081 0.71984 $1736,3$ 37 0.60953 0.33448 0.71892 $1738,3$ 38 0.60976 0.12562 0.63858 $1736,4$ 41 0.75766 0.1	15	0,29664	0,04883	0,95386	1738,3
17 0.2263 0.12108 0.9644 $1734,6$ 18 0.23873 0.36957 0.87928 $1729,6$ 19 0.23812 0.71654 0.65443 $1736,7$ 20 0.34028 0.07959 0.9351 $1735,1$ 21 0.31327 0.135 0.93868 $1735,9$ 22 0.33692 0.18197 0.92549 $1740,8$ 23 0.31377 0.28583 0.90368 $1735,3$ 24 0.33734 0.25294 0.90191 $1730,5$ 25 0.33863 0.26321 0.88035 $1730,7$ 26 0.32381 0.41779 0.84815 1737 27 0.36415 0.88026 0.30616 $1739,1$ 28 0.44051 0.18526 0.87733 $1736,4$ 29 0.42267 0.29538 0.85736 $1738,9$ 30 0.41696 0.52494 0.74027 $1735,9$ 31 0.43343 0.72332 0.53192 $1732,9$ 32 0.4549 0.83126 0.31702 $1736,7$ 33 0.52852 0.30441 0.79199 $1737,4$ 34 0.50801 0.60238 0.61557 $1738,9$ 35 0.54513 0.65544 0.51963 $1735,3$ 36 0.60976 0.35659 0.70862 $1739,1$ 39 0.64814 0.45974 0.60769 $1738,7$ 40 0.75881 0.03263 0.61557 $1738,7$ 43 0.81369 0.493	16	0,21495	0,10805	0,97008	1737,2
18 0.28373 0.36957 0.87928 $1729,6$ 19 0.23812 0.71654 0.65443 $1736,7$ 20 0.34028 0.07959 0.9351 $1735,1$ 21 0.31327 0.135 0.93868 $1735,3$ 22 0.33692 0.18197 0.92549 $1740,8$ 23 0.31377 0.28583 0.90368 $1735,3$ 24 0.33734 0.25294 0.90191 $1730,5$ 25 0.38363 0.26321 0.88035 $1730,7$ 26 0.32381 0.41779 0.84815 17377 27 0.36415 0.88026 0.30616 $1739,1$ 28 0.44051 0.18526 0.87733 $1736,4$ 29 0.42267 0.29538 0.85736 $1738,9$ 30 0.41696 0.52494 0.74027 $1735,9$ 31 0.43343 0.72332 0.53192 $1732,9$ 32 0.45494 0.88126 0.31702 $1736,7$ 33 0.52852 0.30441 0.79199 $1737,4$ 34 0.50801 0.60238 0.61557 $1738,3$ 35 0.54513 0.65544 0.51963 $1735,3$ 36 0.60976 0.35659 0.70862 $1739,1$ 39 0.64814 0.45974 0.60769 $1738,7$ 40 0.75881 0.03263 0.65843 $1738,7$ 41 0.7066 0.2528 0.64894 $1740,7$ 45 -0.02105 $0.$	17	0,2263	0,12108	0,9644	1734,6
19 0.23812 0.71654 0.65443 $1736,7$ 20 0.34028 0.07959 0.93511 $1735,11$ 21 0.31327 0.135 0.93868 $1735,9$ 22 0.33692 0.18197 0.92549 $1740,8$ 23 0.31377 0.28583 0.90368 $1735,3$ 24 0.33734 0.25294 0.90191 $1730,5$ 25 0.38363 0.26321 0.88035 $1730,7$ 26 0.32381 0.41779 0.84815 1737 27 0.36415 0.88026 0.30616 $1739,11$ 28 0.44051 0.18526 0.87733 $1736,4$ 29 0.42267 0.29538 0.85736 $1738,9$ 30 0.41696 0.52494 0.74027 $1735,9$ 31 0.43343 0.72332 0.53192 $1732,9$ 32 0.4549 0.83126 0.31702 $1736,7$ 33 0.52852 0.30441 0.79199 $1737,4$ 34 0.50801 0.60238 0.61557 $1738,3$ 35 0.54513 0.65544 0.51963 $1735,3$ 36 0.63030 0.23081 0.71984 $1736,3$ 37 0.60953 0.33448 0.71982 $1738,7$ 38 0.60976 0.35659 0.70862 $1739,1$ 39 0.64814 0.45974 0.60769 $1738,7$ 40 0.7581 0.03263 0.64586 $1732,6$ 41 0.75766 0	18	0,28373	0,36957	0,87928	1729,6
20 $0,34028$ $0,07959$ $0,9351$ $1735,1$ 21 $0,31327$ $0,135$ $0,93868$ $1735,9$ 22 $0,33692$ $0,18197$ $0,92549$ $1740,8$ 23 $0,31377$ $0,28583$ $0,90048$ $1735,3$ 24 $0,33734$ $0,25294$ $0,90191$ $1730,5$ 25 $0,38363$ $0,26321$ $0,88035$ $1730,7$ 26 $0,32381$ $0,41779$ $0,84815$ 1737 27 $0,36415$ $0,88026$ $0,30616$ $1739,1$ 28 $0,44051$ $0,18526$ $0,87733$ $1736,4$ 29 $0,42267$ $0,29538$ $0,85736$ $1738,9$ 30 $0,41696$ $0,52494$ $0,74027$ $1735,9$ 31 $0,43343$ $0,72332$ $0,53192$ $1732,9$ 32 $0,4549$ $0,83126$ $0,31702$ $1736,3$ 33 $0,52852$ $0,30441$ $0,79199$ $1737,4$ 34 $0,50801$ $0,60238$ $0,61557$ 1738 35 $0,54513$ $0,65544$ $0,51963$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71984$ $1736,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 41 $0,75766$ $0,12562$ $0,63858$ 17366 42 $0,70035$ $0,27699$ $0,65843$ $1738,6$ 44 $0,9376$ $0,23028$	19	0,23812	0,71654	0,65443	1736,7
21 0,31327 0,135 0,93868 1735,9 22 0,33692 0,18197 0,92549 1740,8 23 0,31377 0,28583 0,90368 1735,3 24 0,33734 0,25294 0,90191 1730,5 25 0,38363 0,26321 0,88035 1730,7 26 0,32381 0,41779 0,84815 1737 27 0,36415 0,88026 0,30616 1739,1 28 0,44051 0,18526 0,87733 1736,4 29 0,42267 0.29538 0,85736 1738,9 30 0,41696 0,52494 0,74027 1735,9 31 0,43343 0,72332 0,53192 1732,9 32 0,4549 0,83126 0,31702 1736,4 33 0,52852 0,30441 0,71919 1737,4 34 0,50801 0,60238 0,61557 1738 35 0,64513 0,65544 0,71984 173	20	0,34028	0,07959	0,9351	1735,1
22 $0,33692$ $0,18197$ $0,92549$ $1740,8$ 23 $0,31377$ $0,28583$ $0,90368$ $1735,3$ 24 $0,3734$ $0,25294$ $0,90191$ $1730,5$ 25 $0,38363$ $0,26321$ $0,88035$ $1730,7$ 26 $0,32381$ $0,41779$ $0,84815$ 1737 27 $0,36415$ $0,88026$ $0,30616$ $1739,1$ 28 $0,44051$ $0,18526$ $0,87733$ $1736,4$ 29 $0,42267$ $0,29538$ $0,85736$ $1738,9$ 30 $0,41696$ $0,52494$ $0,74027$ $1732,9$ 31 $0,43343$ $0,72332$ $0,53192$ $1732,9$ 32 $0,4549$ $0,81126$ $0,31702$ $1736,7$ 33 $0,52852$ $0,30441$ $0,79199$ $1737,4$ 34 $0,50801$ $0,60238$ $0,61557$ 1738 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71892$ $1738,3$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ $1735,7$ 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,9649$ $1745,6$ <td>21</td> <td>0,31327</td> <td>0,135</td> <td>0,93868</td> <td>1735,9</td>	21	0,31327	0,135	0,93868	1735,9
23 0,31377 0,28583 0,90368 1735,3 24 0,33734 0,25294 0,90191 1730,5 25 0,38363 0,26321 0,88035 1730,7 26 0,32381 0,41779 0,84815 1737 27 0,36415 0,88026 0,30616 1739,1 28 0,44051 0,18526 0,87733 1736,4 29 0,42267 0,29538 0,85736 1738,9 30 0,41696 0,52494 0,74027 1735,9 31 0,43343 0,72332 0,53192 1732,9 32 0,4549 0,83126 0,31702 1736,7 33 0,52852 0,30441 0,71984 1735,3 36 0,65303 0,23081 0,71984 1736,3 37 0,60953 0,33448 0,71984 1736,3 38 0,60976 0,35659 0,70862 1739,1 39 0,64814 0,45974 0,60769 <td< td=""><td>22</td><td>0,33692</td><td>0,18197</td><td>0,92549</td><td>1740,8</td></td<>	22	0,33692	0,18197	0,92549	1740,8
24 0,33734 0,25294 0,90191 1730,5 25 0,38363 0,26321 0,88035 1730,7 26 0,32381 0,41779 0,84815 1737 27 0,36415 0,88026 0,30616 1739,1 28 0,44051 0,18526 0,87733 1736,4 29 0,42267 0,29538 0,85736 1738,9 30 0,41696 0,52494 0,74027 1735,9 31 0,43343 0,72332 0,53192 1732,9 32 0,4549 0,8126 0,31702 1736,7 33 0,52852 0,30441 0,79199 1737,4 34 0,50801 0,60238 0,61557 1738 35 0,54513 0,65544 0,51963 1735,3 36 0,60953 0,33448 0,71892 1738,3 37 0,60953 0,33448 0,7188,1 1736,4 40 0,75766 0,12562 0,63858 1	23	0,31377	0,28583	0,90368	1735,3
25 $0,38363$ $0,26321$ $0,88035$ $1730,7$ 26 $0,32381$ $0,41779$ $0,84815$ 1737 27 $0,36415$ $0,88026$ $0,30616$ $1739,1$ 28 $0,44051$ $0,18526$ $0,87733$ $1736,4$ 29 $0,42267$ $0,29538$ $0,85736$ $1738,9$ 30 $0,41696$ $0,52494$ $0,74027$ $1735,9$ 31 $0,43343$ $0,72332$ $0,53192$ $1732,9$ 32 $0,4549$ $0,83126$ $0,31702$ $1736,7$ 33 $0,52852$ $0,30441$ $0,79199$ $1737,4$ 34 $0,50801$ $0,60238$ $0,61557$ 1738 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71892$ $1738,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,30109$ 1735 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98844$ $1738,6$ 47 $-0,05407$ $0,15238$ $0,96434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 51 $-0,26513$ $0,77$	24	0,33734	0,25294	0,90191	1730,5
26 $0,32381$ $0,41779$ $0,84815$ 1737 27 $0,36415$ $0,88026$ $0,30616$ $1739,11$ 28 $0,44051$ $0,18526$ $0,87733$ $1736,4$ 29 $0,42267$ $0,29538$ $0,85736$ $1738,9$ 30 $0,41696$ $0,52494$ $0,74027$ $1735,9$ 31 $0,43343$ $0,72332$ $0,53192$ $1732,9$ 32 $0,4549$ $0,83126$ $0,31702$ $1736,7$ 33 $0,52852$ $0,30441$ $0,79199$ $1737,4$ 34 $0,50801$ $0,60238$ $0,61557$ $1738,3$ 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71892$ $1738,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,11$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27099$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,7$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1738,6$	25	0,38363	0,26321	0,88035	1730,7
27 $0,36415$ $0,88026$ $0,30616$ $1739,1$ 28 $0,44051$ $0,18526$ $0,87733$ $1736,4$ 29 $0,42267$ $0,29538$ $0,85736$ $1738,9$ 30 $0,41696$ $0,52494$ $0,74027$ $1735,9$ 31 $0,43343$ $0,72332$ $0,53192$ $1732,9$ 32 $0,4549$ $0,83126$ $0,31702$ $1736,7$ 33 $0,52852$ $0,30441$ $0,79199$ $1737,4$ 34 $0,50801$ $0,60238$ $0,61557$ 1738 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71892$ $1738,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,11$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63838$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ $1735,7$ 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98844$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$	26	0,32381	0,41779	0,84815	1737
28 $0,44051$ $0,18526$ $0,87733$ $1736,4$ 29 $0,42267$ $0,29538$ $0,85736$ $1738,9$ 30 $0,41696$ $0,52494$ $0,74027$ $1735,9$ 31 $0,43343$ $0,72332$ $0,53192$ $1732,9$ 32 $0,4549$ $0,83126$ $0,31702$ $1736,7$ 33 $0,52852$ $0,30441$ $0,79199$ $1737,4$ 34 $0,50801$ $0,60238$ $0,61557$ 1738 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71892$ $1738,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,11$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64856$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ $1736,7$ 42 $0,70035$ $0,23028$ $0,26489$ $1740,1$ 43 $0,81369$ $0,49365$ $0,30109$ $1735,7$ 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 51 $-0,22836$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,22928$	27	0,36415	0,88026	0,30616	1739,1
29 $0,42267$ $0,29538$ $0,85736$ $1738,9$ 30 $0,41696$ $0,52494$ $0,74027$ $1735,9$ 31 $0,43343$ $0,72332$ $0,53192$ $1732,9$ 32 $0,4549$ $0,83126$ $0,31702$ $1736,7$ 33 $0,52852$ $0,30441$ $0,79199$ $1737,4$ 34 $0,50801$ $0,60238$ $0,61557$ 1738 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,66303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71892$ $1738,7$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ $1737,7$ 54 $-0,33965$	28	0,44051	0,18526	0,87733	1736,4
30 $0,41696$ $0,52494$ $0,74027$ $1735,9$ 31 $0,43343$ $0,72332$ $0,53192$ $1732,9$ 32 $0,4549$ $0,81126$ $0,31702$ $1736,7$ 33 $0,52852$ $0,30441$ $0,79199$ $1737,4$ 34 $0,50801$ $0,60238$ $0,61557$ 1738 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71984$ $1738,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,0939$ $0,47006$ $0,87737$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ $1737,7$ 54 $-0,33965$ $0,58464$ $0,75933$ $1737,7$	29	0,42267	0,29538	0,85736	1738,9
31 $0,43343$ $0,72332$ $0,53192$ $1732,9$ 32 $0,4549$ $0,83126$ $0,31702$ $1736,7$ 33 $0,52852$ $0,30441$ $0,79199$ $1737,4$ 34 $0,50801$ $0,60238$ $0,61557$ 1738 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71892$ $1738,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98944$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ 1737 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$	30	0,41696	0,52494	0,74027	1735,9
32 $0,4549$ $0,83126$ $0,31702$ $1736,7$ 33 $0,52852$ $0,30441$ $0,79199$ $1737,4$ 34 $0,50801$ $0,60238$ $0,61557$ 1738 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71984$ $1736,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,22928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ $1737,7$ 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ </td <td>31</td> <td>0,43343</td> <td>0,72332</td> <td>0,53192</td> <td>1732,9</td>	31	0,43343	0,72332	0,53192	1732,9
33 $0,52852$ $0,30441$ $0,79199$ $1737,4$ 34 $0,50801$ $0,60238$ $0,61557$ 1738 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71892$ $1738,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,02263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ $1737,7$ 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 59 $-0,47757$ <	32	0,4549	0,83126	0,31702	1736,7
34 $0,50801$ $0,60238$ $0,61557$ 1738 35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71892$ $1738,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ $1737,7$ 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49798$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ <	33	0,52852	0,30441	0,79199	1737,4
35 $0,54513$ $0,65544$ $0,51963$ $1735,3$ 36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71892$ $1738,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ $1737,7$ 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,8509$ $1740,7$ 58 $-0,50727$ <td>34</td> <td>0,50801</td> <td>0,60238</td> <td>0,61557</td> <td>1738</td>	34	0,50801	0,60238	0,61557	1738
36 $0,65303$ $0,23081$ $0,71984$ $1736,3$ 37 $0,60953$ $0,33448$ $0,71892$ $1738,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,32197$ $0,01712$ $0,9459$ 1737 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ 58 $-0,50727$ $0,47105$ $0,74386$ $1766,$	35	0,54513	0,65544	0,51963	1735,3
37 $0,60953$ $0,33448$ $0,71892$ $1738,3$ 38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ $1737,7$ 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ 58 $-0,50727$ $0,47105$ $0,74386$ 176	36	0,65303	0,23081	0,71984	1736,3
38 $0,60976$ $0,35659$ $0,70862$ $1739,1$ 39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ $1737,7$ 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,45778$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ 58 $-0,50727$ $0,47105$ $0,74386$ $1766,2$ 59 $-0,47757$ $0,61182$ $0,63085$ 17	37	0,60953	0,33448	0,71892	1738,3
39 $0,64814$ $0,45974$ $0,60769$ $1738,7$ 40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ $1737,7$ 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ 58 $-0,50727$ $0,47105$ $0,74386$ $1766,2$ 59 $-0,47757$ $0,61182$ $0,63085$ $1738,4$	38	0,60976	0,35659	0,70862	1739,1
40 $0,75881$ $0,03263$ $0,64566$ $1732,6$ 41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,11$ 53 $-0,32197$ $0,01712$ $0,9459$ $1737,7$ 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,11$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ 58 $-0,50727$ $0,47105$ $0,74386$ $1766,2$ 59 $-0,47757$ $0,61182$ $0,63085$ $1738,4$	39	0,64814	0,45974	0,60769	1738,7
41 $0,75766$ $0,12562$ $0,63858$ 1736 42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ 1737 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ 58 $-0,50727$ $0,47105$ $0,74386$ $1766,2$ 59 $-0,47757$ $0,61182$ $0,63085$ $1738,4$	40	0,75881	0,03263	0,64566	1732,6
42 $0,70035$ $0,27699$ $0,65843$ $1738,7$ 43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ 1737 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ 58 $-0,50727$ $0,47105$ $0,74386$ $1766,2$ 59 $-0,47757$ $0,61182$ $0,63085$ $1738,4$	41	0,75766	0,12562	0,63858	1736
43 $0,81369$ $0,49365$ $0,30109$ 1735 44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ 1737 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ 58 $-0,50727$ $0,47105$ $0,74386$ $1766,2$ 59 $-0,47757$ $0,61182$ $0,63085$ $1738,4$	42	0,70035	0,27699	0,65843	1738,7
44 $0,9376$ $0,23028$ $0,26489$ $1740,1$ 45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ 1737 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ 58 $-0,50727$ $0,47105$ $0,74386$ $1766,2$ 59 $-0,47757$ $0,61182$ $0,63085$ $1738,4$	43	0,81369	0,49365	0,30109	1/35
45 $-0,02105$ $0,1565$ $0,98894$ $1740,7$ 46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ 1737 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ 58 $-0,50727$ $0,47105$ $0,74386$ $1766,2$ 59 $-0,47757$ $0,61182$ $0,63085$ $1738,4$	44	0,9376	0,23028	0,26489	1740,1
46 $-0,04344$ $0,11735$ $0,99649$ $1745,6$ 47 $-0,05407$ $0,15238$ $0,98434$ $1733,8$ 48 $-0,09939$ $0,47006$ $0,87737$ $1738,6$ 49 $-0,10414$ $0,68439$ $0,72271$ $1739,4$ 50 $-0,28386$ $0,44544$ $0,84944$ $1738,6$ 51 $-0,26513$ $0,77249$ $0,57517$ $1736,2$ 52 $-0,2928$ $0,81224$ $0,50457$ $1738,1$ 53 $-0,32197$ $0,01712$ $0,9459$ 1737 54 $-0,33965$ $0,55464$ $0,75933$ $1737,7$ 55 $-0,35798$ $0,78986$ $0,49219$ $1733,1$ 56 $-0,49598$ $0,17385$ $0,85247$ $1740,6$ 57 $-0,45777$ $0,26349$ $0,8509$ $1740,7$ 58 $-0,50727$ $0,47105$ $0,74386$ $1766,2$ 59 $-0,47757$ $0,61182$ $0,63085$ $1738,4$	45	-0,02105	0,1565	0,98894	1740,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	-0,04344	0,11/35	0,99649	1/45,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4/	-0,05407	0,15238	0,98434	1/33,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	-0,09939	0,47006	0,87737	1/38,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	-0,10414	0,08439	0,72271	1/39,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	-0,20300	0,44344	0,04944	1/30,0
52 -0,2928 0,81224 0,30437 1738,1 53 -0,32197 0,01712 0,9459 1737 54 -0,33965 0,55464 0,75933 1737,7 55 -0,35798 0,78986 0,49219 1733,1 56 -0,49598 0,17385 0,85247 1740,6 57 -0,45777 0,26349 0,8509 1740,7 58 -0,50727 0,47105 0,74386 1766,2 59 -0,47757 0,61182 0,63085 1738.4	52	-0,20313	0,77249	0,57517	1730,2
55 -0,32177 0,01712 0,9437 1737 54 -0,33965 0,55464 0,75933 1737,7 55 -0,35798 0,78986 0,49219 1733,1 56 -0,49598 0,17385 0,85247 1740,6 57 -0,45777 0,26349 0,8509 1740,7 58 -0,50727 0,47105 0,74386 1766,2 59 -0,47757 0,61182 0,63085 1738.4	52	-0,2920	0,01224	0.0457	1730,1
51 0,35765 0,35764 0,75755 1757,7 55 -0,35798 0,78986 0,49219 1733,1 56 -0,49598 0,17385 0,85247 1740,6 57 -0,45777 0,26349 0,8509 1740,7 58 -0,50727 0,47105 0,74386 1766,2 59 -0,47757 0,61182 0,63085 1738.4	53	_0,32177	0 55464	0 75933	1737 7
56 -0,49598 0,17385 0,85247 1740,6 57 -0,45777 0,26349 0,8509 1740,7 58 -0,50727 0,47105 0,74386 1766,2 59 -0,47757 0,61182 0,63085 1738.4	55	-0 35798	0 78986	0 49219	1733.1
57 -0,45777 0,26349 0,8509 1740,7 58 -0,50727 0,47105 0,74386 1766,2 59 -0,47757 0,61182 0,63085 1738.4	56	-0 49598	0.17385	0.85247	1740.6
51 6,0000 1710,7 58 -0,50727 0,47105 0,74386 1766,2 59 -0.47757 0.61182 0.63085 1738.4	57	-0 45777	0.26349	0.8509	1740 7
59 -0.47757 0.61182 0.63085 1738.4	58	-0.50727	0.47105	0.74386	1766.2
	59	-0,47757	0,61182	0,63085	1738,4

60	0 40749	0 76020	0 48004	1736 3
61	-0,40749	0,70929	0,48994	1730,3
62	-0,48536	0,73701	0,49302	1736.3
63	-0,+0530	0,72920	0,40010	1730,5
64 64	-0 5852	0.12445	0,80114	1737.9
65	-0 58636	0.25551	0,76954	1739.2
66	-0 56094	0 35599	0 7482	1739,1
67	-0 60953	0,33355	0 78281	1735,1
68	-0 65094	0.4693	0,70201	1734.4
69	-0 67564	0 40027	0,62326	1742.6
70	-0 77933	0.08967	0.61924	1737.1
70	-0.70184	0.21787	0.67916	1739.2
72	-0.81299	0.12048	0.56884	1737.3
73	-0.87409	0 18178	0.45321	1740.3
73	-0.04406	-0.03398	0 99893	1738.9
75	-0.05577	-0.08696	0.99571	1739.9
76	-0.09098	-0.0557	0,99557	1740.3
77	-0.0148	-0.14779	0.98945	1739
78	-0.04649	-0.23055	0.97125	1736.9
79	-0.07994	-0.36712	0.92753	1739.4
80	-0.10266	-0.01204	0.99439	1737.7
81	-0.12042	-0.09772	0.98862	1739.3
82	-0.14107	-0.03137	0.98838	1736.2
83	-0.15003	-0.07715	0.9864	1739,4
84	-0.16947	-0.11544	0.97704	1735.2
85	-0,10011	0,6697	0,73096	1731,9
86	-0,2231	-0,22675	1,09028	1974
87	-0,13773	-0,37943	0,91318	1735,3
88	-0,22933	-0,02419	0,97188	1736,1
89	-0,00035	-0,00062	0,9993	1736,9
90	-0,25481	-0,25101	0,93164	1734,5
91	-0,20048	-0,37266	0,90291	1733,2
92	-0,25375	-0,50049	0,82832	1739
93	-0,23269	-0,63691	0,7333	1736
94	-0,38662	-0,2514	0,88669	1737,1
95	-0,48855	-0,12837	0,86572	1742,1
96	-0,43687	-0,39405	0,80953	1739,4
97	-0,41049	-0,46747	0,77924	1733,1
98	-0,50466	-0,0318	0,85992	1733,9
99	-0,54425	-0,22992	0,80546	1736,2
100	-0,55967	-0,3671	0,74317	1738,4
101	-0,5224	-0,50295	0,68725	1736,5
102	-0,56937	-0,65296	0,49264	1732,2
103	-0,69619	-0,07734	0,70914	1732,5
104	-0,46905	-0,72437	0,50539	1738,2
105	-0,672	-0,28699	0,68286	1738,3
106	-0,65298	-0,31551	0,69102	1741,1
107	-0,67624	-0,33688	0,65529	1738,3
108	-0,69045	-0,32834	0,64475	1738,3
109	-0,63248	-0,53222	0,56288	1738,2

110	-0,74439	-0,23778	0,62434	1738,5
111	-0,84745	-0,09045	0,52349	1738,4
112	-0,8879	-0,01266	0,46298	1740,6
113	-0,84236	-0,23376	0,48806	1740,2
114	-0,81602	-0,41448	0,40146	1737,1
115	0,07371	-0,30265	0,94619	1731,4
116	0,04972	-0,45485	0,89061	1740,3
117	0,12096	-0,0499	0,98983	1735,4
118	0,12823	-0,08744	0,9871	1736,8
119	0,14128	-0,12852	0,98229	1739,3
120	0,12679	-0,29277	0,94787	1738,3
121	0,16819	-0,28771	0,94062	1734,5
122	0,17858	-0,2826	0,94087	1735,5
123	0,16322	-0,35479	0,91861	1734,9
124	0,16697	-0,3871	0,90894	1741,5
125	0,2654	-0,01376	0,96448	1738,8
126	0,27187	-0,04149	0,96221	1739,4
127	0,21672	-0,27862	0,93695	1740,2
128	0,2507	-0,38995	0,88466	1736
129	0,25747	-0,59725	0,76258	1742
130	0,29447	-0,67422	0,6774	1738,2
131	0,32327	-0,09427	0,94073	1736,7
132	0,30846	-0,10626	0,94599	1739,3
133	0,38849	-0,43086	0,81369	1736,9
134	0,40854	-0,01006	0,91151	1736,2
135	0,42149	-0,29285	0,85964	1740,2
136	0,43237	-0,39067	0,8132	1738,8
137	0,44613	-0,43309	0,78278	1737,5
138	0,46573	-0,46707	0,75434	1741,6
139	0,47595	-0,45224	0,75705	1741,7
140	0,49843	-0,43975	0,74644	1737,2
141	0,46454	-0,71935	0,51314	1735,1
142	0,53959	-0,00684	0,84277	1739,4
143	0,55813	-0,07403	0,82455	1735,4
144	0,54415	-0,30659	0,78038	1737,3
145	0,63329	-0,15643	0,75876	1739,2
146	0,72898	-0,03495	0,68116	1735,2
147	0,73756	-0,03294	0,67262	1735,9
148	0,79293	-0,09375	0,59914	1735,1
149	0,54919	-0,67577	0,4911	1737,6
150	0,9024	-0,16911	0,39732	1738,8

№ точки	ξ в единицах	η в	ζв	радиус-вектор
В	среднего радиуса	единицах	единицах	кратера,
каталоге	1738.1 км	среднего	среднего	отсчитываемый
		радиуса	радиуса	от центра масс
		1738.1 км	1738.1 км	Луны R
1	0,0549	0,24301	0,9671	1735,8
2	0,0667	0,2836	0,95998	1743,7
3	0,01672	0,03533	0,99862	1737
4	0,07235	0,33542	0,93498	1731,1
5	0,09286	0,35089	0,93282	1739,8
6	0,01549	0,48749	0,87187	1736,4
7	0,04542	0,41529	0,91073	1741,5
8	0,0626	0,44682	0,89743	1745,9
9	0,05467	0,60544	0,79146	1734,6
10	0,06253	0,6487	0,75682	1735,9
11	0,03107	0,79194	0,60854	1736,8
12	0,05167	0,73915	0,66978	1736
13	0,11758	0,22874	0,96837	1741,5
14	0,17014	0,2149	0,96379	1741,6
15	0,14246	0,34754	0,92889	1741,5
16	0,18158	0,34878	0,92156	1741,5
17	0,10361	0,4223	0,90144	1739,5
18	0,14226	0,55239	0,82379	1741,6
19	0,14192	0,72655	0,67436	1740,5
20	0,16814	0,83794	0,5148	1734,1
21	0,2959	0,08005	0,95319	1740,3
22	0,26596	0,22557	0,93923	1741,4
23	0,25028	0,33589	0,91123	1743,1
24	0,21012	0,50714	0,83467	1736,4
25	0,1995	0,64508	0,73724	1737,6
26	0,299	0,52228	0,80147	1742
27	0,29175	0,67883	0,67536	1739,9
28	0,2135	0,82685	0,52359	1741,1
29	0,2205	0,84508	0,48362	1735,2
30	0,23849	0,86574	0,43629	1735,3
31	0,02492	0,99977	0,04107	1739,7
32	0,27812	0,90894	0,30666	1736
33	0,32661	0,35998	0,87104	1733,7
34	0,38818	0,33709	0,85642	1736,2
35	0,3007	0,45863	0,83447	1735,6
36	0,3634	0,49985	0,78648	1738,5
37	0,34131	0,54724	0,76261	1736
38	0,2627	0,3768	0,50098	1181,4
39	0,3032	0,64986	0,69897	1740,5
40	0,33826	0,66887	0,65953	1735,3
41	0,34692	0,60185	0,71982	1738,7

40	0.24262	0.7504	0.56016	1725 7
42	0,34363	0,7504	0,56216	1/35,/
43	0,37830	0,79574	0,40833	1/34,4
44	0,48222	0,03434	0,87003	1/40
45	0,45081	0,24943	0,85959	1/41,9
40	0,46043	0,36924	0,800	1/30,3
4/	0,44400	0,40452	0,7071	1/39,3
48	0,41202	0,564	0,71594	1/38,5
49	0,46164	0,51084	0,72691	1/40,2
50	0,48037	0,56969	0,66591	1/3/
51	0,48796	0,57983	0,65515	1/41,2
52	0,40736	0,68023	0,60571	1/34,2
55	0,42417	0,67816	0,59718	1/35
54	0,45279	0,7041	0,54951	1740,5
<u> </u>	0,5094	0,06524	0,86174	1/43,6
56	0,54633	0,09262	0,83139	1/36,6
5/	0,57395	0,0185	0,8204	1/40,5
58	0,51651	0,15421	0,84566	1/43,1
59	0,50269	0,21839	0,83472	1/35,6
60	0,57891	0,2476	0,781	1743,7
61	0,52163	0,39549	0,75618	1738,4
62	0,53265	0,46416	0,70444	1734,1
63	0,56752	0,58312	0,58513	1742
64	0,58445	0,75718	0,29414	1739,3
65	0,54206	0,80493	0,24	1737,5
66	0,64126	0,09689	0,76343	1741,1
67	0,6143	0,16/0/	0,76939	1735,7
68	0,62443	0,29956	0,71975	1736,1
69	0,6564	0,2536	0,70833	1735,4
70	0,68702	0,45817	0,56725	1741,3
71	0,63151	0,50957	0,5821	1735,8
72	0,62663	0,65175	0,42498	1736,4
73	0,66285	0,68764	0,29629	1738,1
74	0,74205	0,2287	0,63615	1744,7
75	0,78706	0,25147	0,55627	1731,3
76	0,75998	0,31265	0,56332	1731,7
77	0,73472	0,45577	0,49863	1734,8
78	0,75524	0,41947	0,50946	1743,2
79	0,73784	0,5087	0,44463	1738,9
80	0,74239	0,58532	0,32436	1/3/,2
81	0,83599	0,05748	0,54505	1737,5
82	0,87078	0,18667	0,45698	1739,8
83	0,85435	0,35594	0,3747	1735,5
84	0,93426	0,08958	0,34397	1737,4
85	-0,08153	0,09796	0,99167	1/3/,8
86	-0,26972	0,1/062	-0,94786	1738,4
8/	-0,00498	0,25097	0,9/10/	1/43,3
88	-0,030/3	0,29524	0,95844	1743,9
89	-0,07544	0,2/162	0,96109	1740,8
90	-0,08488	0,24239	0,96573	1/36,9
91	-0,04673	0,33536	0,94396	1743,1

92	-0.09222	0 32984	0 94021	1739.2
93	-0.05355	0.42619	0.90242	1737.1
94	-0.023	0.52355	0.84985	1735.4
95	-0.05205	0.52867	0.85031	1742.6
96	-0.04246	0.66723	0,74225	1736.3
97	-0.03914	0,72771	0,68556	1739
98	-0,02056	0,82001	0,57057	1736,7
99	-0,07124	0.8242	0,56094	1737.3
100	-0,0881	0,89215	0,4323	1729,9
101	0,06562	0,92036	0,38738	1739,3
102	-0,15065	0,0573	0,98821	1740,3
103	-0,10594	0,1484	0,98524	1741,5
104	-0,18174	0,33188	0,92517	1737,3
105	-0,12485	0,4092	0,9051	1740
106	-0,14152	0,45438	0,87919	1737,6
107	-0,14599	0,45908	0,8764	1738,2
108	-0,11141	0,50576	0,85693	1740,3
109	-0,16496	0,63842	0,7499	1735,6
110	-0,28127	0,74286	-0,60446	1734,9
111	-0,15747	0,86738	0,46888	1735,5
112	-0,16571	0,83888	0,5107	1731,1
113	-0,20119	0,03675	0,98088	1741,5
114	-0,20909	0,03404	0,97816	1739,6
115	-0,20575	0,05823	0,97706	1738,4
116	-0,23644	0,23732	0,94258	1738,7
117	-0,23741	0,37712	0,89037	1730,6
118	-0,24045	0,4196	0,87498	1737,6
119	-0,20337	0,54364	0,81317	1736,5
120	-0,28611	0,61413	0,73569	1738,3
121	-0,2927	0,73299	0,61327	1737,3
122	-0,22921	0,84066	0,48896	1736,6
123	-0,27833	0,84042	0,45958	1733,7
124	-0,30973	0,11082	0,94069	1732,1
125	-0,37427	0,16707	0,91168	1737,4
126	-0,37218	0,26573	0,88795	1736
127	-0,3831	0,33945	0,86264	1743,4
128	-0,32251	0,43302	0,84081	1736,8
129	-0,34923	0,47712	0,80739	1739,4
130	-0,36519	0,5779	0,72778	1735,5
131	-0,3268	0,69016	0,64407	1736,3
132	-0,37907	0,74955	0,54285	1738,3
133	-0,38008	0,84263	0,38032	1737,3
134	-0,40718	0,08427	0,90559	1732
135	-0,42053	0,20074	0,88729	1741,9
136	-0,41834	0,38872	0,81933	1735,9
137	-0,44551	0,33854	0,83128	1741,7
138	-0,49531	0,59079	0,63607	1737,2
139	-0,44449	0,65346	0,61295	1738,4
140	0,37922	0,79444	0,46905	1733,7
141	-0,47369	0,70365	0,52359	1/32,6

142	0 50077	0.07505	0.85671	1737 7
142	-0,50977	0,07393	0,83071	1737,7
143	-0 598/12	0.0411	0,00447	1735
144	-0,5785	0,0411	0,77772	1733
145	-0,52505	0,10083	0,83857	1741,1
140	0,5750	0,33324	0,77101	1735,5
147	0.58501	0,47738	0,04576	1735,1
140	0,52078	0,4402	0,0820	1745,5
149	-0,52078	0,39384	0,00907	1736,5
150	-0,53822	0,53908	0,04004	1730,1
151	-0,54002	0,07419	0,30034	1733,2
152	-0,53875	0,72758	0.31211	1733,5
153	0,52553	0,77208	0,31211	1734,7
154	0,52555	0,00585	0,04043	1738.5
155	-0,04937	0,08542	0,73303	1730,5
150	-0,03047	0,17414	0,7314	1737.3
157	-0,07345	0,17744	0,07222	1735,5
150	-0,011)5	0,29290	0,7320	1739,9
157	-0,651/18	0,33817	0,70338	1736.3
161	-0,65481	0,40714	0,57455	1733
162	-0,62781	0,47440	0,58551	1730.2
162	-0,02701	0,50784	0,50214	1730,2
164	-0,65451	0,52012	0,32081	1733.3
165	-0,03431	0,02304	0,42000	1734.8
165	-0,073698	0.07585	0,58007	1736.7
167	-0 7809	0.06121	0.62089	1737,3
167	-0 70499	0.28092	0,65222	1739.2
160	-0 7772	0,20032	0,59579	1730,2
170	-0.78013	0 29861	0 54565	1734.2
170	-0.73354	0.36608	0,56945	1734.9
172	-0.65632	0,38365	0.65058	1739.1
173	-0.70601	0.46173	0.53136	1732.9
174	-0.73323	0.54766	0.39888	1735.2
175	-0.78537	0.52647	0.31451	1731.9
176	-0.87719	0.15179	0.45747	1739.6
177	-0.89733	0.12291	0.42292	1737.4
178	-0.85504	0.24091	0.45839	1737.5
179	-0.8717	0,20266	0,44116	1734,2
180	-0,90172	0.0711	0,42633	1738
181	-0,96561	0,02023	0,25501	1736,2
182	-0,86787	0,19684	0,45142	1734,4
183	-0,95355	0,12072	0,26169	1731,4
184	-0,0746	-0,27646	0,96048	1742
185	-0,07765	-0,48505	0,86945	1735,7
186	-0,05677	-0,61528	0,78328	1734
187	-0,0427	-0,75788	0,64948	1736,4
188	-0,00735	-0,9	0,43621	1738,4
189	-0,11586	-0,26051	0,959	1738,9
190	-0,17605	-0,2517	0,95274	1739,9
191	-0,16857	-0,31221	0,93564	1739,2

100	0 17456	0.42527	0.00004	1521 6
192	-0,17456	-0,42537	0,88384	1731,6
193	-0,26743	-0,0/15/	0,96366	1742,7
194	-0,20629	-0,17351	0,96484	1741,2
195	-0,29596	-0,1774	0,94148	1742,8
196	-0,21205	-0,2367	0,94891	1739,3
197	-0,28013	-0,20902	0,9352	1735,3
198	-0,29399	-0,29243	0,90943	1737,2
199	-0,20816	-0,49406	0,84448	1738,6
200	-0,26844	-0,45532	0,84912	1738,4
201	-0,28867	-0,4206	0,85948	1737,2
202	-0,30066	-0,50794	0,8072	1738,1
203	-0,23437	-0,86774	0,43297	1734,1
204	-0,35625	-0,01096	0,9353	1739,7
205	-0,35641	-0,0949	0,9302	1739,2
206	-0,36861	-0,06998	0,92699	1738,2
207	-0,34902	-0,16953	0,92125	1737,5
208	-0,34585	-0,2917	0,89168	1737,9
209	-0,35405	-0,2474	0,9048	1742,6
210	-0,35377	-0,353	0,86411	1735
211	-0,31085	-0,55288	0,77764	1744,2
212	-0,35684	-0,56801	0,74171	1738,2
213	-0,31395	-0,67718	0,66523	1737,8
214	-0,33906	-0,70965	0,61784	1738,4
215	-0,33459	-0,74239	0,57203	1729,7
216	-0,37545	-0,73586	0,56211	1736,7
217	-0,32063	-0,85219	0,40576	1732,6
218	-0,42211	-0,05066	0,90624	1739,8
219	-0,44662	-0,00561	0,89436	1737,6
220	-0,47141	-0,04341	0,88132	1738,8
221	-0,4286	-0,16378	0,88783	1737
222	-0,46543	-0,18033	0,86521	1736,1
223	-0,42501	-0,24418	0,87165	1738,1
224	-0,48791	-0,23423	0,8409	1738,1
225	-0,49429	0,20234	0,84728	1740,8
226	-0,42956	-0,57704	0,69331	1736,5
227	-0,455	-0,50163	0,73867	1741,8
228	-0,46289	-0,53055	0,71164	1740
229	-0,40249	-0,68803	0,60318	1737,4
230	-0,4245	-0,60909	0,66827	1736,2
231	-0,43625	-0,68464	0,58313	1/3/,3
232	-0,48785	-0,62427	0,61219	1740,3
233	-0,41526	-0,73226	0,54082	1739,1
234	-0,4388	-0,7976	0,41469	1738,7
235	-0,486/1	-0,77906	0,39238	1736,2
236	-0,45719	-0,81231	0,34866	1729,8
237	-0,528/6	-0,11386	0,83862	1/34,5
238	-0,58174	-0,10496	0,80525	1736,2
239	-0,5268	-0,36167	0,76947	1738,5
240	-0,53225	-0,3/381	0,75713	1734,9
241	-0,58063	-0,35599	0,73443	1740,9

242	-0,53164	-0,43339	0,72688	1737,1
243	-0,56482	-0,68649	0,45619	1736,7
244	-0,52563	-0,73987	0,42172	1739,4
245	-0,56747	-0,72853	0,38238	1737,2
246	-0,63405	-0,05351	0,77148	1738,2
247	-0,65029	-0,04047	0,76022	1740,2
248	-0,65234	-0,06026	0,75249	1734,1
249	-0,65538	-0,08254	0,74865	1735,3
250	-0,61116	-0,1307	0,7785	1735,2
251	-0,64608	-0,19517	0,73855	1738,9
252	-0,67457	-0,13684	0,72468	1737,2
253	-0,68768	-0,10293	0,7168	1735,8
254	-0,60131	-0,30942	0,73644	1737,8
255	-0,66552	-0,382	0,63814	1734,7
256	-0,61339	-0,48691	0,62219	1738,5
257	-0,6421	-0,41881	0,63958	1735,3
258	-0,65087	-0,41628	0,63721	1740,7
259	-0,69283	-0,47739	0,54087	1738,5
260	-0,62483	-0,58076	0,51749	1734,2
261	-0,6052	-0,62744	0,49199	1739,8
262	-0,64535	-0,65537	0,39388	1739,1
263	-0,64325	-0,68762	0,33145	1735
264	-0,6612	-0,62292	0,41128	1733,2
265	-0,71785	-0,09552	0,68504	1732,6
266	-0,76707	-0,06232	0,63744	1736,9
267	-0,71057	-0,15962	0,6849	1737,6
268	-0,75235	-0,11512	0,64828	1737,7
269	-0,72898	-0,33598	0,59481	1736,4
270	-0,73826	-0,32589	0,59179	1739,4
271	-0,79782	-0,49153	0,34529	1735,8
272	-0,70653	-0,54397	0,45076	1736,6
273	-0,71205	-0,5826	0,3904	1737,1
274	-0,84269	-0,01429	0,53234	1732,6
275	-0,87779	-0,04527	0,47928	1740,1
276	-0,89434	-0,13848	0,42755	1739,7
277	-0,81779	-0,33663	0,4619	1734,1
278	-0,90965	-0,06464	0,41512	1741,5
279	-0,91288	-0,04732	0,40651	1738,8
280	-0,93421	-0,04998	0,35236	1737,6
281	-0,92093	-0,19437	0,33821	1738,3
282	-0,93618	-0,13776	0,33007	1741,9
283	-0,91086	-0,2102	0,34979	1734,8
284	0,05086	-0,0072	0,99888	1738,4
285	0,05118	-0,03865	0,99792	1738,1
286	0,0168	-0,1021	0,99963	1746,7
287	0,03598	-0,14025	0,99064	1740,1
288	0,00525	-0,38832	0,92296	1740,4
289	0,01174	-0,33179	0,94655	1743,5
290	0,09178	-0,41041	0,90855	1740,1
291	0,07064	-0,69335	0,71929	1740,8

202	0.05412	0.07664	0 47501	17262
292	0,05412	-0,8/664	0,47591	1/30,3
293	0,10128	-0,01833	0,99203	1747,2
294	0,17941	-0,00908	0,98403	1743,7
293	0,1371	-0,17707	0,97312	1740,9
290	0,10800	-0,20881	0,97472	1742,7
297	0,13007	-0,34033	0,83073	1739,5
290	0,13271	-0,00033	0,76749	1730,3
299	0,17004	-0,08739	0,70137	1/34,3
201	0,11089	-0,82373	0,33930	1729.9
202	0,20831	-0,00088	0,97012	1/30,0
302	0,21377	-0,14241 0 18124	0,90784	1740,4
303	0,2443	-0,10134	0,93400	1740,0
205	0,21089	-0,32311	0,92234	1739,2
206	0,23299	-0,5185	0,91721	1743,8
207	0,28933	-0,39696	0,87099	1/4/,2
209	0,22918	-0,40090	0,83030	1/41,0
200	0,29789	-0,43304	0,83824	1/30,/
210	0,24370	-0,33442	0,79333	1/36,/
211	0,22832	-0,09092	0,08433	1/30,3
212	0,2272	-0,81177	0,33219	1/32,7
212	0,33098	-0,21092	0,91380	1742,0
214	0,31243	-0,30244	0,90124	1739,5
215	0,34773	-0,30249	0,80979	1745.0
216	0,32003	-0,4941	0,81074	1743,2
217	0,33004	-0,40207	0,83398	1/36,4
219	0,34013	-0,37773	0,73009	1/3/,/
210	0,36534	-0,34700	0,74233	1730,2
220	0,38033	-0,36202	0,73792	1/40,3
320	0,34073	-0,77890	0,32230	1730,2
321	0,39494	-0,83982	0,30704	1734,0
322	0,43033	-0,04083	0,89387	1733,9
323	0,4933	-0,07848	0,80379	1734,3
324	0,41703	-0,18283	0,88702	1733,9
325	0,40398	-0,19855	0,80433	1740,0
320	0,47173	-0,18073	0,80332	1733,0
327	0,50546	-0,17044	0,81425	1733,0
320	0,5340	-0,10235	0,75170	1731,4
32)	0,504/9	-0,55645	0,70526	1730,4
331	0,56492	-0,50001	0,7020	1742,3
332	0,50472	-0,5447	0,0170	1733,5
332	0,50370	-0.6132	0,56089	1732,2
333	0,53177	-0,0152	0,50009	1733,0
334	0,02787	-0 29482	0 72962	17347
336	0,61305	-0.26304	0 7022	1736.3
337	0,00005	-0 31389	0.67559	1736.6
338	0 59996	-0.51094	0.61101	1733.2
339	0 60718	-0 54402	0 57885	1737.8
340	0 64419	-0.52515	0,55519	1737.2
341	0.6654	-0.62103	0.4094	1734.7
	0,0001	-,-=100	2,.371	,,

342	0,60529	-0,7132	0,34792	1734,7
343	0,69973	-0,10605	0,7075	1739,3
344	0,71655	-0,38434	0,57733	1733,3
345	0,78176	-0,30177	0,54596	1738,3
346	0,77526	-0,52182	0,35531	1737,7
347	0,86128	-0,09704	0,49062	1731,1
348	0,88025	-0,21595	0,42129	1737,2
349	0,88148	-0,27157	0,37629	1731,4
350	0,96042	-0,07802	0,26006	1734,7

Каталог KAZAN

№ точки	ξ в единицах	η в единицах среднего	ζ в единицах	радиус-
В	среднего радиуса	радиуса 1738.1 км	среднего радиуса	вектор
каталоге	1738.1 км		1738.1 км	кратера,
				отсчитыва
				емый от
				центра
				масс Луны
				R
1	0,00543±17	0,02071±17	0,99922 ±172	1737,1
2	0,01873±13	0,06981±14	0,99608 ±138	1735,8
3	0,02506±18	0,02166±18	0,99787 ±184	1735,4
4	0,04203±12	0,05661±11	0,99725 ±109	1737,6
5	0,06282±10	0,07236±16	0,99508 ±145	1737,5
6	0,08922±16	0,03027±16	0,9949 ±165	1737
7	0,02217±11	0,15166±19	0,9874 ±153	1736,8
8	0,02291±18	0,13428±18	0,98951 ±184	1736,1
9	0,08642±11	0,13147±16	0,98654 ±149	1736,4
10	$0,05488 \pm 9$	0,24339±10	0,96772 ±83	1737
11	0,06626±17	$0,28325\pm18$	$0,95569 \pm 180$	1736,3
12	0,07868±12	0,29054±23	0,9534 ±168	1737,7
13	0,01596±12	0,39135±12	0,91833 ±131	1735,3
14	0,03124±9	0,36918±10	0,92772 ±94	1736,3
15	0,07236±15	$0,3364\pm25$	$0,93788 \pm 203$	1736,4
16	0,08051±23	$0,3739\pm23$	0,92299 ±233	1736,5
17	0,09317±7	0,35084±7	0,92987 ±61	1735
18	0,01594±13	0,4872±13	0,87208 ±149	1736,5
19	0,0437±11	0,42991±10	$0,90077 \pm 90$	1736,5
20	0,04518±22	0,41471±19	0,90722 ±198	1735,6
21	0,05398±19	0,40852±21	0,90948 ±194	1735,5
22	0,0622±12	0,44656±13	0,89038 ±122	1734,7
23	0,07182±8	0,40013±8	0,91232 ±73	1736
24	0,07315±17	0,46546±18	0,88009 ±180	1735,1
25	0,0171±12	0,55555±18	0,83031 ±210	1736,7
26	0,02118±16	0,50949±16	0,85946 ±167	1737
27	0,04864±17	0,65991±17	0,74791 ±174	1735,7
28	0,05202±20	0,64256±20	0,76358 ±208	1736,9

20	0.05401.10	0 (71(0) 10	0 70710 100	1725.0
29	0,05421±18	$0,6/162\pm19$	0,73712 ±189	1735,8
30	0,05457±10	$0,60546\pm20$	0,79155 ±124	1734,7
31	0,06254±9	0,64864±9	0,75671 ±79	1735,7
32	0,06495±13	0,69898±10	0,70945 ±104	1734,7
33	0,0848±18	0,59973±18	0,79368 ±205	1735,3
34	0,09199±21	0,67978±14	0,72654 ±160	1736,7
35	0,09551±16	0,65395±15	0,74751 ±146	1734,2
36	0,03133±15	0,7916±16	0,60754 ±161	1735,2
37	0,03528±14	$0,75015\pm14$	0,65806 ±144	1735,5
38	$0,04942\pm20$	0,70791±21	0,70237 ±209	1735,4
39	0,05182±15	0,73919±17	0,67008 ±156	1736,4
40	$0,0652\pm14$	$0,7572\pm15$	0,64762 ±169	1735,5
41	$0,074\pm19$	$0,78612\pm19$	0,61108 ±192	1735,4
42	0,09808±21	0,77079±21	0,62793 ±218	1736,4
43	0,04373±16	0,87572±16	0,4789 ±164	1736,5
44	0,05432±16	0,83172±16	0,54767 ±166	1733,4
45	0,07327±16	$0,82698\pm27$	0,55495 ±216	1735,7
46	0,07362±23	$0,88847\pm23$	0,45034 ±235	1736
47	$0,05597{\pm}14$	$0,90547{\pm}14$	0,41801 ±144	1736,1
48	0,10262±15	$0,06045\pm14$	0,99215 ±136	1736,8
49	0,11773±18	$0,02825 \pm 18$	0,99212 ±180	1737,2
50	0,135±8	$0,00816\pm8$	0,99126 ±74	1738,9
51	0,16651±16	$0,04695{\pm}15$	0,98425 ±246	1737
52	0,17017±12	0,01247±12	0,98468 ±134	1737
53	0,18263±15	$0,15934{\pm}15$	0,96908 ±150	1736,2
54	0,11756±16	0,2291±16	0,9656 ±162	1737
55	0,12121±11	0,28509±11	0,94966 ±132	1736,2
56	0,15163±15	$0,24934{\pm}15$	0,95468 ±172	1735,1
57	0,16991±19	$0,21456\pm20$	0,96077 ±200	1736,3
58	0,10295±16	0,33791±17	0,93467 ±158	1736,7
59	0,14221±11	0,30515±12	0,94009 ±106	1735,6
60	0,14224±22	$0,3467\pm 26$	0,92577 ±230	1735,9
61	0,14309±27	$0,3754{\pm}28$	0,915 ±226	1736,9
62	0,14394±21	0,36698±21	0,91837 ±214	1737,1
63	0,15058±14	0,30241±15	0,93977 ±150	1735,7
64	0,18125±15	0,34884±17	0,91797 ±146	1735,7
65	0,1894±16	0,33489±16	0,92117 ±167	1735,1
66	0,10648±19	0,47811±19	0,86895 ±194	1733,8
67	0,18148±14	0,46442±15	0,86588 ±157	1736,7
68	0,14115±10	$0,58827 \pm 9$	0,79571 ±82	1737,4
69	0,14223±21	0,55215±20	0,81963 ±247	1735,4
70	0,16051±15	0,50592±13	0,845 ±129	1734,4
71	0,10062±15	0,66472±15	0,73795 ±153	1735,1
72	0,14444±12	0,62722±11	0,7629 ±151	1734,9
73	0,16598±14	0,68564±11	0,70628 ±133	1735
74	0,19964±9	0,64514±10	0,73639 ±88	1736,6
75	0,11241±13	0,78205±13	0,60893 ±133	1733,8
76	0,14184±15	0,72619±20	0,67012 ±204	1735,1
77	0,14336±19	0,76722±19	0,62239 ±191	1735,1
78	0,13373±15	$0,87554{\pm}14$	0,46276 ±141	1736,9
		•		

70	0 15077 12	0.85725+12	0.49940 + 126	1724.9
79 80	$0,13077\pm12$ 0.16080+20	$0,83723\pm13$ 0.81759 ± 20	$0,40049 \pm 130$ 0.5483 ± 203	1734,0
81	$0,10009\pm 20$ 0.1689/+1/	$0,81739\pm20$ 0.83745+13	$0,5485 \pm 205$	1734.1
82	$0,10094\pm14$ 0.1705±22	$0,83743\pm13$ 0.82250±22	$0,51352 \pm 115$	17363
82	$0,1705\pm22$	$0,82239\pm22$ 0.86159±16	$0,34038 \pm 227$ 0.46325 ± 1.46	1734.0
81	$0,19850\pm15$ 0.24203±16	$0,00139\pm10$ 0.00355+11	$0,40323 \pm 140$	1734,9
0 4 85	$0,24303\pm10$ 0.25878+15	$0,00335\pm11$ 0.06018+10	$0,90903 \pm 114$	1730,4
0J 06	$\frac{0,23676\pm13}{0.20624\pm20}$	$0,00910\pm19$		1737
80 87	$0,29024\pm20$	$0,04024\pm19$ 0.10204 ± 15	$0,93193 \pm 103$	1734,9
07	$0,21494\pm14$ 0.2258±10	$0,10004\pm13$ 0.12080±10	$0,97085 \pm 140$	1730,4
00	$0,2230\pm10$	$0,12069\pm10$ 0.15145+11	$0,90033 \pm 103$	1737,9
09	$0,29701\pm11$ 0.20782+12	$0,13143\pm11$ 0.15146+12	$0,94047 \pm 112$	1/34,/
90	$0,29782\pm13$ 0.26235±10	$0,13140\pm13$ 0.28006+10	0.9403 ± 137	1734,0
91	$0,20233\pm10$	$0,20000\pm10$	0.92181 ± 103	1733,3
92	$\frac{0,21242\pm11}{0.22508\pm12}$	$0,3089/\pm11$ 0.20064+12	$0,92042 \pm 112$	1/3/,1
95	$0,22308\pm12$	$0,30904\pm12$	0.92222 ± 121	1735,5
94	$0,25000\pm11$	$0,30047\pm11$ 0.22506±12	$0,90137 \pm 108$	1/30,3
95	$0,23000\pm12$	$0,33390\pm12$	$0,90399 \pm 118$	1/34,8
90	$0,26471\pm10$	$0,30980\pm10$	$0,88240 \pm 104$	1733,1
97	$0,23213\pm12$	$0,44090\pm12$ 0.47001+16	$0,83390 \pm 124$	1734,0
90	$0,23707\pm10$	0,47991±10	$0,83029 \pm 180$	1734,4
99 100	$0,19900\pm13$	$0,04300\pm13$ 0.62288 ± 10	$0,73082 \pm 130$	1737,1
100	$0,27313\pm10$ 0,20224+15	$0,02200\pm19$	$0,7297 \pm 221$	1/34,/
101	$0,29224\pm13$	$0,0707\pm13$		1735,0
102	$0,20920\pm10$	$0,71409\pm10$ 0.71128+11	$0,0037 \pm 130$	1733,4
105	$0,22301\pm11$	$0,71120\pm11$ 0.74225+20	$0,00190 \pm 108$	1735,5
104	$0,2007\pm21$	$0,74525\pm20$	$0,0138 \pm 192$	1735,0
105	$0,21291\pm10$	0.82070 ± 18	$0,31000 \pm 105$	1730,2
100	$0,22037\pm13$	$0,04304\pm10$	$0,46313 \pm 130$	1730,3
107	$0,23324\pm10$	$0,00904\pm13$	$0,38343 \pm 140$	1734,1
100	$\frac{0,25882\pm19}{0.25528\pm20}$	$0,80338\pm 20$ 0.87848 ± 22	$0,43021 \pm 202$	1734,0
109	$\frac{0,23326\pm20}{0.27016\pm13}$	$0,87846\pm22$ 0.84201+13	$0,40208 \pm 230$	1730,9
110	$0,27010\pm13$ 0.27181+14	$0,84201\pm13$ 0.80245+14	$0,40171 \pm 124$ 0.52826 ± 145	1735,9
111	$\frac{0,27101\pm14}{0.21081\pm18}$	$0,80243\pm14$ 0.00443\pm18	0.36857 ± 177	1735,4
112	$0,21001\pm10$	$0,90443\pm18$ 0.00886±10		1730,0
113	$\frac{0,27793\pm19}{0.30252\pm14}$	$0,90800\pm19$ 0.02803+14	0.95124 ± 143	1737,3
114	$0,30232\pm14$ 0.32005+14	$0,02075\pm14$ 0.01716±14	$0,9124 \pm 145$	1733,7
115	0.32003 ± 14 0.32729+1/	0.03/3/10-14	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	1736.4
110	0.35364 ± 10	$0,05454\pm15$ 0,06021+10	0,93313 +105	1737.6
117	0.38563 ± 10	$0,00021\pm10$ 0.05/102+15	0,92023 + 152	1736.8
110	$0,30303\pm10$ 0,31293+10	$0,03+02\pm13$ 0.13529+11	$0,92023 \pm 132$ 0.93942 +106	1730,8
120	0.33698 ± 13	$0,13329\pm11$ 0.1973+13	0.91952 ± 100	1736.4
120	0 33698+11	0.18261+11	0.92164 +106	173/ 0
121	0.36193+15	0.10716+15	0.92371 +149	1734 /
122	0 38064+13	0 14817+13	0.91154 +128	1736.1
123	0 38865+9	0 19174+9	0,90006 +82	1736.3
127	0 3138+11	0.28582+11	0.90463 +111	1736.8
125	0.31675+12	0.20126+12	0.92578 +120	1736.3
120	0 31675+12	0.20126+12	0.92578 +120	1736 3
127	0 33828+8	0.25391+11	0.90379 +01	1734 A
120	0,00000000	0,20071-11	0,70317 -71	т, , т

120	0.26161+10	0.20228 ± 1.0	0.00020 ± 100	1726.0
129	$0,30101\pm10$ 0.38500+11	$0,20228\pm10$ 0.21767+11	$0,90939 \pm 100$	1730,9
130	$0,38309\pm11$ 0.32603+8	$0,21707\pm11$ 0.26012+0	$0,89313 \pm 107$	1735,5
131	$0,32093\pm 6$ 0.30083+12	$0,30013\pm 9$ 0.45865+12	$0,87243 \pm 74$ 0.82463 ±118	1730,1
132	$0,30083\pm12$	$0,43803\pm12$ 0.43284+5	$0,83405 \pm 118$	1733,9
133	$0,30042\pm0$	$0,43264\pm 3$ 0.41814+11	$0,84330 \pm 47$	1734,0
134	$0,32434\pm11$ 0.36348±11	$0,41014\pm11$ 0.50006+11	$0,84732 \pm 109$ 0.78308 ± 116	1730,4
133	$0,30340\pm11$	$0,30000\pm11$ 0.42182±14		1735,5
130	$0,36460\pm14$ 0.21240±15	$0,43103\pm14$ 0.59759 ± 15	$0,01442 \pm 142$	1730,5
137	$0,31249\pm13$ 0.24120+12	$0,30730\pm13$ 0.54714 ± 12	$0,74314 \pm 148$	1730,3
130	$0,34139\pm13$ 0.27460+11	$0,34/14\pm13$ 0.56056±11	$0,70213 \pm 120$	1733,5
139	$0,37409\pm11$ 0.38224+12	$0,30930\pm11$ 0.54117+12	$0,73121 \pm 110$ 0.74712 ± 128	1737,0
140	$0,38224\pm13$	$0,34117\pm13$ 0.55272+8	$0,74713 \pm 128$ 0.72707 ± 74	1735,0
141	$0,30404\pm 0$ 0,20289 ± 12	$0,33272\pm 6$ 0.65012 ± 12	$0,73797 \pm 74$	1730,4
142	$0,30200\pm13$	$0,03012\pm13$ 0.62068±17	$0,09038 \pm 132$	1737,3
145	$0,3110\pm17$	$0,03900\pm17$	$0,70041 \pm 109$	1735,4
144	$0,32600\pm11$ 0.34604±11	$0,00335\pm11$ 0.60106+11	$0,00840 \pm 110$ 0.71685 ± 112	1730,2
145	$0,34094\pm11$ 0.34846±17	$0,00190\pm11$ 0.67167+17	$0,71085 \pm 112$	1735,1
140	$0,34640\pm17$ 0.31567±12	$0,07107\pm17$ 0.78133+12	$\begin{array}{c} 0,03130 \pm 173 \\ \hline 0.53452 \pm 117 \end{array}$	1733,0
147	$\frac{0,31307\pm12}{0.33476\pm12}$	$0,78133\pm12$ 0,77250+10	$0,53452 \pm 117$ 0.53602 ±158	1734,5
140	$0,33470\pm12$	$0,77239\pm19$ 0.7502±0	$0,55002 \pm 150$	1734,9
149	$0,34332\pm 9$ 0.37228+14	$0,7302\pm 9$ 0.72800+14	$0,50102 \pm 94$	1736.3
150	$\frac{0,37228\pm14}{0.37858\pm14}$	$0,72099\pm14$ 0.795/2+1/	$0,37202 \pm 144$	1730,5
151	$\frac{0,37838\pm14}{0.3867\pm13}$	$0,79542\pm14$ 0.70542+13	$0,47014 \pm 143$	1735,5
152	$0,3007\pm13$ 0.3358+11	$0,70342\pm13$ 0.8518/1+16	0,39751 +166	1730,5
153	$\frac{0,3535\pm11}{0.36411\pm22}$	0,87981+22	0,30093 +212	1735 7
155	$0,30411\pm22$ 0/19879+13	0.03774 ± 13	$0,30075 \pm 212$	1733,7
155	$0,47077\pm13$	$0,03774\pm13$ 0.180/1+0	0,80344 ±130	1736.5
157	$0,40177\pm 7$ 0.41204+12	0.18534 ± 12	$\frac{0,0040 \pm 110}{0.89091 \pm 119}$	1736,2
157	$0,41204\pm12$ 0.43181+8	$0,10334\pm12$ 0.16139+10	$0,89691 \pm 119$ 0.88622 +115	1736,2
150	0.42255 ± 11	0.29578 ± 11	$0,85522 \pm 108$	1735,9
160	0,45106+10	0.22970 ± 11 0.24972+8	0,85448 + 92	1734.6
161	0.45757+12	0.27062+12	0.84582 +121	1736.4
162	0.46467+16	0.23327+25	0.85169 +244	1734.4
163	0.46717+11	0.27945+11	0.83792 +110	1736.8
164	0.48368+12	0.2536+12	0.83618 +116	1735,9
165	0.46214+13	0.319+13	0.82619 +123	1736.3
166	0.40897+19	0.47415+17	0.7784 +206	1736.3
167	0.44653+11	0.42182+11	0.78736 +114	1735.7
168	0.49542±12	0.40174 ± 12	0.76805 ±123	1735.3
169	0.41789±13	0.52471 ± 14	0.73861 ±139	1734.2
170	0.42069±8	0.596±12	0.68148 ±216	1735.2
171	0,43068±13	0,54661±13	0,71736 ±133	1737.1
172	0.45705±13	0.58093±13	0.67199 ±127	1736.3
173	0,46156±12	0,51089±12	0,72358 ±125	1736
174	0,48092±12	0,56909±12	0,66614 ±121	1737,1
175	0,4831±10	0,59181±10	0,64239 ±85	1734,9
176	0,31675±12	0,20126±12	0,92578 ±120	1736,3
177	0,49967±11	0,53552±11	0,6795 ±115	1736,5
178	0,40744±9	0,67994±8	0,60739 ±73	1735,7

170	0 /1200 12	0.61629 ± 12	0.62702 ± 127	17247
1/9	$0,41388\pm13$ 0,42552+15	$0,04038\pm13$	$0,03/93 \pm 127$	1/34,/
100	$0,42332\pm13$ 0.48026±12	$0,09310\pm10$ 0.61868+12	$0,37789 \pm 100$	1730,0
101	$0,48020\pm12$	$0,01000\pm12$ 0.67670+8	$0,02124 \pm 124$ 0.61442 ±61	1737,5
102	$0,40175\pm 8$ 0.42471+0	$0,07079\pm 8$ 0,67807±0	$0,01443 \pm 01$	1735,5
103	$0,42471\pm9$ 0.42163+14	$0,07807\pm9$ 0.77860+14	$0,39833 \pm 92$ 0.45454 ± 143	1730,5
104	$0,43103\pm14$ 0.43101±14	$0,77809\pm14$ 0.70152±14	$0,43434 \pm 143$	1737,3
105	$0,43191\pm14$	$0,79132\pm14$	0,43079 ±141	1730,9
100	$0,45401\pm10$	$0,7239\pm10$ 0.70280+12	$0,33103 \pm 139$	1/34,2
10/	$0,43293\pm13$	$0,70369\pm13$	$0,34494 \pm 132$	1730
100	$0,40030\pm10$	$0,00211\pm17$	$0,29721 \pm 180$	1735,4
109	$0,4109\pm11$ 0.45657±22	$0,83303\pm11$ 0.83212±21	0.31227 ± 220	1736,4
190	$0,43037\pm22$ 0.40805+11	$0,03212\pm21$ 0.03757+11	0.31227 ± 220 0.86474 ± 104	1736,7
191	$0,49895\pm11$ 0.50065±20	$0,03737\pm11$	$0,80474 \pm 104$	1736,5
192	$\frac{0,30903\pm20}{0.50873\pm5}$	$0,0032\pm 20$	$0,85705 \pm 204$	1736,8
193	$0,50075\pm 5$ 0.53070+11	$0,07715\pm0$ 0.08575±11	$0,83033 \pm 33$	1730,7
194	0.53079 ± 11 0.54662±10	$0,00375\pm11$ 0,00230±10	$0,84239 \pm 111$ 0.83114 ± 0.4	1736.5
195	$0.5+0.02\pm10$ 0.50675+11	0.07237 ± 10 0.1678/1+11	0.84518 +112	1730,3
190	$0,50075\pm11$ 0,51662+11	$0,10704\pm11$ 0.15406+11	0.84164 + 108	1737,3
197	0.53291 ± 7	$0,13+00\pm11$ 0.13553+9	0.8346 +67	1737,2
100	$0,53271\pm7$ 0.5/369+9	$0,13335\pm 7$ 0,17407+9	0.82095 +88	1737,2
200	0,540013+7	$0,17407\pm 7$ 0.19695+7	$0,82075 \pm 60$	1735 4
200	0.54098+12	$0,19095\pm7$ 0.11875+12	0.8315 + 119	1736.5
201	0.54501 ± 12	$0,11075\pm12$ 0.17911+11	0.81851 + 112	1730,3
202	0 55458+13	0.16631+13	0.81524 +125	1738
203	0.56855+8	0.13254+8	0.8111 +71	1730
204	0.5758+13	$0,15254\pm0$ 0.16888+13	0.79872 +136	1736.4
205	0.50287 ± 15	$0,10000\pm15$ 0.21824+15	0.83406 + 144	1734.8
200	0 55032+11	$0,21024\pm13$ 0.24004+11	0.7985 ± 107	1736.4
207	0.57931+11	0.24004 ± 11 0.24756+11	0.77532 ± 107	1736.4
200	0 57932+12	0.24732+10	0.77527 ± 111	1736.2
210	0.52208+12	0.39525+12	0.75434 + 118	1736.2
211	0.52876+12	0.30503+12	0.79004 +124	1735.3
212	0.53003+13	0.3989+17	0.74748 +155	1737
212	0.53591+13	0.38372+13	0.75111 +128	1736.9
214	0.56842±16	0.38082 ± 16	0.7289 ±156	1737.6
215	0.51322±16	0.42639 ± 14	0.7441 ± 208	1737.1
216	0.53297±18	0.46405 ± 19	0.7059 ±184	1736.1
217	0.56432±10	0.45979±11	0.68454 ±94	1736.8
218	0,5087±12	0.60324±12	0,61424 ±123	1738,1
219	0.50875±13	0.60315±13	0,61235 ±130	1736
220	0,54668±16	0.65615±16	0,5185 ±170	1736.6
221	0,56203±17	0.68728±17	0,45919 ±166	1737.3
222	0,57615±13	0,68815±13	0,43911 ±131	1736.6
223	0,53363±18	0,71029±18	0,45377 ±171	1733,9
224	0,31675±12	0,20126±12	0,92578 ±120	1736,3
225	0,55525±16	0,70821±16	0,4317 ±160	1734,8
226	0,58407±14	0,75531±8	0,29348 ±133	1736,2
227	0,54366±20	0,8034±20	0,24127 ±221	1737,4
228	0,64718±15	0,0677±15	0,75714 ±144	1735,2

	0 44 4 7 4 0	0.4.5-4.5.0		1 - 2 - 2
229	0,61454±9	0,16716±9	0,76962 ±91	1736,3
230	0,61692±13	0,13129±13	0,77553 ±132	1737,5
231	0,67347±12	0,18761±13	0,71376 ±123	1736,5
232	0,59955±13	0,20913±13	0,77246 ±120	1738
233	0,60168±8	0,24809±10	0,75754 ±94	1735,9
234	0,61195±8	0,26086±9	0,74628 ±81	1737,6
235	0,61674±14	0,24726±14	0,74715 ±148	1737,9
236	0,62486±17	0,29977±17	0,72077 ±165	1737,9
237	0,65331±17	0,23083±16	0,72039 ±164	1737,3
238	0,65645±13	0,25295±13	0,70889 ±139	1735,9
239	0,69663±19	0,24536±19	0,67227 ±188	1735,9
240	0,59993±8	$0,29992\pm 8$	0,74011 ±71	1736
241	0,60912±14	0,33475±14	0,71754 ±145	1736,3
242	0,60959±10	0,35705±10	0,70673 ±92	1736,8
243	0,66084±14	0,35538±14	0,6591 ±145	1735,9
244	0,68116±16	0,38965±16	0,61781 ±163	1735,9
245	0,69109±8	0,38118±8	0,61275 ±81	1736,7
246	0,69277±14	0,3493±15	0,62881 ±149	1735,8
247	0,67094±9	0,46633±9	0,57457 ±78	1736,1
248	0,68723±11	0,45787±11	0,56367 ±110	1737,8
249	0,60334±15	0,59767±16	0,52561 ±202	1735,9
250	0,6042±13	0,54158±13	0,58242 ±127	1736
251	0,60741±14	0,56268±14	0,5581 ±142	1735,5
252	0,63238±11	0,50884±11	0,58281 ±106	1736,8
253	0,64075±19	0,52328±19	0,56149 ±189	1737,8
254	0,64309±12	0,51177±12	0,56912 ±118	1737,6
255	0,60146±21	0,68223±20	0,41356 ±238	1736,6
256	0,60191±15	0,69469±16	0,39308 ±171	1737,6
257	0,62691±16	0,65163±16	0,42342 ±155	1735,4
258	0,64093±14	0,66662±14	0,37799 ±143	1736,4
259	0,66276±15	0,68676±15	0,29772 ±159	1737,7
260	0,76309±12	0,00601±12	0,6436 ±122	1735,1
261	0,78189±11	0,00139±11	0,62109 ±114	1735,6
262	0,7817±5	0,01142±5	0,62107 ±43	1735,4
263	0,74612±13	0,15116±13	0,6453 ±136	1734,6
264	0,75732±11	0,12637±11	0,63818 ±107	1735,3
265	0,70078±11	0,27719±10	0,65493 ±101	1735,4
266	0,78777±20	0,25113±19	0,55738 ±194	1733,2
267	0,76012±13	0,31255±14	0,56622 ±136	1734,7
268	0,77161±15	0,383±15	0,50424 ±171	1734,9
269	0,77867±15	0,38035±16	0,49527 ±159	1734,9
270	0,71706±20	0,48197±22	0,50012 ±206	1735,1
271	0,73583±15	0,45503±16	0,49769 ±154	1734.8
272	0,74597±15	0,49148±15	0,44648 ±156	1735.8
273	0,74649±16	0,45142±19	0,48577 ±219	1735.5
274	0,75699±11	0,41885±17	0,50033 ±160	1737.1
275	0.7101±16	0,55703±32	0,42873 ±246	1736.7
276	0.7259±16	0.58393 ± 24	0.35849 ±221	1735
277	0.73822+20	0.50697+13	0.44329 +214	1736.8
278	0.7437+24	0.58392 + 24	0.32291 +243	1736.6
2,0	·····	·,- ··		1,50,0

279	0,76374±11	$0,58768 \pm 11$	0,26367 ±144	1736,5
280	0,72063±21	$0,61704\pm22$	0,31306 ±187	1736,4
281	$0,80265\pm25$	0,04127±16	0,59283 ±185	1735,8
282	0,8109±14	$0,09706 \pm 17$	0,5755 ±165	1736,5
283	$0,82608\pm1$	$0,09276\pm1$	0,55349 ±4	1735,8
284	0,85729±13	$0,07469 \pm 16$	0,50648 ±184	1735,5
285	$0,88925\pm42$	0,05953±17	0,45065 ±238	1735,8
286	0,80673±19	0,1159±21	0,57773 ±222	1736,4
287	$0,82767\pm23$	0,17749±15	0,52873 ±179	1734,7
288	$0,88617\pm24$	$0,12515\pm20$	0,44399 ±246	1736,4
289	$0,85545\pm16$	$0,2262\pm17$	0,46131 ±192	1734,4
290	0,89388±12	$0,27564{\pm}10$	0,35005 ±122	1736
291	0,93005±21	$0,15155\pm 6$	0,33097 ±187	1735,9
292	0,94664±14	$0,14204{\pm}11$	0,28619 ±141	1736,5
293	$-0,04656\pm14$	$0,04105\pm14$	0,99752 ±141	1737,1
294	-0,0817±11	0,09762±12	0,99112 ±124	1736,8
295	-0,02082±17	$0,15601{\pm}17$	0,98613 ±170	1735,7
296	-0,04139±18	$0,10286{\pm}18$	0,99339 ±182	1737,3
297	-0,04312±17	0,11634±16	0,99134 ±186	1736,5
298	-0,05397±12	0,15183±13	0,98574 ±131	1736,1
299	-0,07033±16	0,16913±16	0,9821 ±163	1736,4
300	-0,00531±6	0,25061±6	0,96707 ±54	1736,4
301	-0,05899±15	0,21573±21	0,97421 ±200	1737,3
302	-0,06424±11	0,25644±9	0,96373 ±107	1736,9
303	-0,06767±17	0,2248±17	0,97058 ±176	1735,6
304	-0,07176±11	0,23358±11	0,96897 ±100	1736,9
305	-0,07592±10	0,27119±22	0,95837 ±134	1736,2
306	-0,08115±15	0,21141±15	0,97234 ±155	1735,3
307	-0,08535±15	0,24181±16	0,96631 ±158	1737,7
308	$-0,04148 \pm 17$	0,42255±17	0,90389 ±173	1735,7
309	-0,09922±9	0,4699±13	0,87584 ±132	1736,1
310	-0,02302±16	0,52341±16	0,84932 ±161	1734,5
311	-0,04046±18	0,53208±19	0,84378 ±189	1735,2
312	-0,05223±21	0,52833±18	0,8461 ±235	1736,1
313	-0,01315±21	0,65147±16	0,75584 ±204	1734,5
314	-0,02411±21	0,67543±21	0,7339 ±218	1734,1
315	-0,04263±22	0,66701±22	0,74174 ±225	1735,4
316	-0,00357±15	0,78051±15	0,62428 ±159	1737,2
317	-0,0118±20	0,71523±19	0,69589 ±186	1734,6
318	-0,03972±23	0,72777±23	0,68176 ±237	1734,6
319	-0,04305±18	0,72761±17	0,68322 ±230	1736,4
320	-0,05311±16	0,75396±13	0,65128 ±148	1734,1
321	-0,07922±21	0,73349±23	0,67335 ±217	1736,1
322	-0,00315±18	0,81361±23	0,57843 ±222	1735,1
323	-0,02039±13	0,81889±10	0,57171 ±121	1736,2
324	-0,02042±21	0,81973±20	0,56873 ±217	1734,5
325	-0,07106±25	0,82372±17	0,55954 ±196	1735,2
326	-0,0864±27	0,83682±25	0,53893 ±248	1736,5
327	-0,08864±11	0,89108±11	0,44292 ±126	1736,4
328	-0,00282±29	0,91931±11	0,39111 ±162	1736,5

220				
329	-0,11635±18	$0,0705\pm18$	0,9898 ±186	1736,5
330	-0,11462±17	0,01567±16	0,99204 ±141	1735,9
331	-0,12917±23	$0,0305\pm24$	0,99105 ±244	1737,9
332	-0,12893±26	0,04074±16	0,99005 ±249	1736,8
333	-0,13529±28	0,08281±12	0,98615 ±167	1736,1
334	$-0,1354\pm18$	0,06341±9	0,98782 ±215	1736,5
335	-0,14943±8	0,0962±11	0,98295 ±109	1736,2
336	-0,14411±20	$0,06735\pm20$	0,98618 ±204	1736,2
337	-0,14968±14	$0,0575\pm14$	0,98595 ±135	1736,2
338	-0,14942±16	0,09611±21	0,98332 ±214	1736,8
339	$-0,15144\pm20$	0,07572±14	0,98496 ±175	1737,1
340	$-0,1648\pm8$	0,03115±14	0,98467 ±132	1736,1
341	-0,19124±19	0,01921±15	0,98042 ±182	1736,5
342	-0,11529±12	0,12047±17	0,98485 ±140	1736,1
343	-0,13676±10	0,31363±14	0,93876 ±159	1736,7
344	$-0,14204\pm11$	0,32005±9	0,9352 ±166	1735,7
345	$-0,14015\pm15$	0,45415±11	0,87776 ±129	1734,9
346	-0,14553±12	0,45879±13	0,87407 ±137	1734,3
347	-0,18571±21	0,46646±15	0,8627 ±179	1734,9
348	-0,11836±28	0,51423±19	0,84748 ±236	1735,2
349	-0,12805±12	$0,54189{\pm}14$	0,82784 ±157	1734,1
350	-0,10317±16	0,68383±12	0,71976 ±152	1734,9
351	-0,13039±11	0,68093±11	0,71773 ±130	1734,4
352	-0,14135±16	$0,68635\pm22$	0,71205 ±246	1736,4
353	-0,1639±11	0,63779±18	0,75093 ±165	1736
251	0.16072 ± 14	0 64446 12	0.74202 + 1.45	1726
554	$-0,10972\pm14$	0,04440±12	$0,74393 \pm 145$	1/36
355	$-0,10972\pm14$ $-0,12228\pm14$	$0,04440\pm12$ 0,72321±16	$\begin{array}{c} 0,74393 \pm 145 \\ \hline 0,67685 \pm 171 \end{array}$	1736
355 356	$\begin{array}{c} -0,10972 \pm 14 \\ -0,12228 \pm 14 \\ -0,12712 \pm 19 \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ 0,72321 \pm 16 \\ 0,74171 \pm 21 \end{array}$	$\begin{array}{r} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \end{array}$	1736 1734,7 1736,4
355 356 357	$\begin{array}{c} -0,10972 \pm 14 \\ -0,12228 \pm 14 \\ -0,12712 \pm 19 \\ -0,13785 \pm 16 \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \end{array}$	$\begin{array}{r} 0,74393 \pm 143 \\ \hline 0,67685 \pm 171 \\ \hline 0,65704 \pm 213 \\ \hline 0,66784 \pm 154 \end{array}$	1736 1734,7 1736,4 1734,8
355 355 356 357 358	$\begin{array}{c} -0,10972 \pm 14 \\ -0,12228 \pm 14 \\ -0,12712 \pm 19 \\ -0,13785 \pm 16 \\ -0,16153 \pm 15 \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ \hline 0,67685 \pm 171 \\ \hline 0,65704 \pm 213 \\ \hline 0,66784 \pm 154 \\ \hline 0,6264 \pm 169 \end{array}$	1736 1734,7 1736,4 1734,8 1735,3
354 355 356 357 358 359	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ \hline 0,67685 \pm 171 \\ \hline 0,65704 \pm 213 \\ \hline 0,66784 \pm 154 \\ \hline 0,6264 \pm 169 \\ \hline 0,59937 \pm 140 \end{array}$	1736 1734,7 1736,4 1734,8 1735,3 1734,3
354 355 356 357 358 359 360	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \end{array}$	1736, 1734,7 1736,4 1734,8 1735,3 1734,3 1736,3
354 355 356 357 358 359 360 361	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ \hline 0,67685 \pm 171 \\ \hline 0,65704 \pm 213 \\ \hline 0,66784 \pm 154 \\ \hline 0,6264 \pm 169 \\ \hline 0,59937 \pm 140 \\ \hline 0,62076 \pm 147 \\ \hline 0,66272 \pm 159 \\ \end{array}$	1736 1734,7 1736,4 1734,8 1735,3 1734,3 1736,3 1736,3 1734,4
354 355 356 357 358 359 360 361 362	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ \hline 0,67685 \pm 171 \\ \hline 0,65704 \pm 213 \\ \hline 0,66784 \pm 154 \\ \hline 0,6264 \pm 169 \\ \hline 0,59937 \pm 140 \\ \hline 0,62076 \pm 147 \\ \hline 0,66272 \pm 159 \\ \hline 0,47582 \pm 170 \\ \end{array}$	$ \begin{array}{r} 1736 \\ 1734,7 \\ 1736,4 \\ 1734,8 \\ 1735,3 \\ 1735,3 \\ 1734,3 \\ 1736,3 \\ 1734,4 \\ 1734,1 \\ \end{array} $
354 355 356 357 358 359 360 361 362 363	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ \hline 0,67685 \pm 171 \\ \hline 0,65704 \pm 213 \\ \hline 0,66784 \pm 154 \\ \hline 0,6264 \pm 169 \\ \hline 0,59937 \pm 140 \\ \hline 0,62076 \pm 147 \\ \hline 0,66272 \pm 159 \\ \hline 0,47582 \pm 170 \\ \hline 0,56919 \pm 172 \\ \end{array}$	$ \begin{array}{r} 1736 \\ 1734,7 \\ 1736,4 \\ 1735,3 \\ 1735,3 \\ 1734,3 \\ 1736,3 \\ 1734,4 \\ 1734,1 \\ 1736,2 \\ \end{array} $
354 355 356 357 358 359 360 361 362 363 364	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ \end{array}$
354 355 356 357 358 359 360 361 362 363 364 365	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ -0,16486\pm16\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ 0,51401 \pm 195 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1733,7\\ \end{array}$
354 355 356 357 358 359 360 361 362 363 364 365 366	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ -0,16486\pm16\\ -0,18\pm13\\ \end{array}$	$\begin{array}{c} 0,04446 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ \hline 0,67685 \pm 171 \\ \hline 0,65704 \pm 213 \\ \hline 0,66784 \pm 154 \\ \hline 0,6264 \pm 169 \\ \hline 0,59937 \pm 140 \\ \hline 0,62076 \pm 147 \\ \hline 0,66272 \pm 159 \\ \hline 0,47582 \pm 170 \\ \hline 0,56919 \pm 172 \\ \hline 0,46943 \pm 194 \\ \hline 0,51401 \pm 195 \\ \hline 0,4443 \pm 152 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1733,7\\ 1734,7\\ \end{array}$
354 355 356 357 358 359 360 361 362 363 364 365 366 367	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ -0,16486\pm16\\ -0,18\pm13\\ -0,19635\pm11\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \hline 0,90081 \pm 17 \\ \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ 0,51401 \pm 195 \\ 0,4443 \pm 152 \\ 0,38366 \pm 198 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1733,7\\ 1734,7\\ 1735,7\\ \end{array}$
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ -0,16486\pm16\\ -0,18\pm13\\ -0,19635\pm11\\ -0,20107\pm15\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \hline 0,90081 \pm 17 \\ \hline 0,0373 \pm 15 \\ \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ 0,51401 \pm 195 \\ 0,4443 \pm 152 \\ 0,38366 \pm 198 \\ 0,97757 \pm 173 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1736,4\\ 1735,3\\ 1735,3\\ 1734,3\\ 1736,3\\ 1736,3\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,7\\ 1735,7\\ 1735,7\\ 1735,9\\ \end{array}$
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ -0,16486\pm16\\ -0,18\pm13\\ -0,19635\pm11\\ -0,20107\pm15\\ -0,20939\pm14\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \hline 0,90081 \pm 17 \\ \hline 0,0373 \pm 15 \\ \hline 0,03387 \pm 15 \\ \hline 0,03387 \pm 15 \\ \hline \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ 0,51401 \pm 195 \\ 0,4443 \pm 152 \\ 0,38366 \pm 198 \\ 0,97757 \pm 173 \\ 0,97664 \pm 170 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1736,4\\ 1734,8\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1735,7\\ 1735,7\\ 1735,9\\ 1737,1\\ \end{array}$
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ -0,16486\pm16\\ -0,18\pm13\\ -0,19635\pm11\\ -0,20107\pm15\\ -0,20939\pm14\\ -0,26332\pm21\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \hline 0,90081 \pm 17 \\ \hline 0,0373 \pm 15 \\ \hline 0,03387 \pm 15 \\ \hline 0,01564 \pm 22 \\ \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ 0,51401 \pm 195 \\ 0,4443 \pm 152 \\ 0,38366 \pm 198 \\ 0,97757 \pm 173 \\ 0,97664 \pm 170 \\ 0,96312 \pm 249 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1735,3\\ 1734,3\\ 1736,3\\ 1736,3\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1735,7\\ 1735,7\\ 1735,9\\ 1735,9\\ 1737,1\\ 1735,6\end{array}$
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ -0,16486\pm16\\ -0,18\pm13\\ -0,19635\pm11\\ -0,20107\pm15\\ -0,20939\pm14\\ -0,26332\pm21\\ -0,26235\pm8\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \hline 0,90081 \pm 17 \\ \hline 0,0373 \pm 15 \\ \hline 0,03387 \pm 15 \\ \hline 0,01564 \pm 22 \\ \hline 0,05685 \pm 11 \\ \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ 0,51401 \pm 195 \\ 0,4443 \pm 152 \\ 0,38366 \pm 198 \\ 0,97757 \pm 173 \\ 0,97664 \pm 170 \\ 0,96312 \pm 249 \\ 0,96274 \pm 129 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1735,7\\ 1735,7\\ 1735,9\\ 1735,9\\ 1737,1\\ 1735,6\\ 1737,2\\ \end{array}$
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ -0,16486\pm16\\ -0,18\pm13\\ -0,19635\pm11\\ -0,20107\pm15\\ -0,20939\pm14\\ -0,26332\pm21\\ -0,26235\pm8\\ -0,2292\pm19\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \hline 0,90081 \pm 17 \\ \hline 0,0373 \pm 15 \\ \hline 0,03387 \pm 15 \\ \hline 0,01564 \pm 22 \\ \hline 0,05685 \pm 11 \\ \hline 0,20421 \pm 14 \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ 0,51401 \pm 195 \\ 0,4443 \pm 152 \\ 0,38366 \pm 198 \\ 0,97757 \pm 173 \\ 0,97664 \pm 170 \\ 0,96312 \pm 249 \\ 0,96274 \pm 129 \\ 0,94938 \pm 169 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1735,7\\ 1735,7\\ 1735,7\\ 1735,9\\ 1735,9\\ 1737,1\\ 1735,6\\ 1737,2\\ 1734,2\\ \end{array}$
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ -0,16486\pm16\\ -0,18\pm13\\ -0,19635\pm11\\ -0,20107\pm15\\ -0,20939\pm14\\ -0,26332\pm21\\ -0,26332\pm21\\ -0,26235\pm8\\ -0,2292\pm19\\ -0,23457\pm14\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \hline 0,90081 \pm 17 \\ \hline 0,0373 \pm 15 \\ \hline 0,03387 \pm 15 \\ \hline 0,01564 \pm 22 \\ \hline 0,05685 \pm 11 \\ \hline 0,20421 \pm 14 \\ \hline 0,19929 \pm 11 \\ \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ 0,51401 \pm 195 \\ 0,4443 \pm 152 \\ 0,38366 \pm 198 \\ 0,97757 \pm 173 \\ 0,97664 \pm 170 \\ 0,96312 \pm 249 \\ 0,96274 \pm 129 \\ 0,94938 \pm 169 \\ 0,94968 \pm 181 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1735,7\\ 1735,7\\ 1735,7\\ 1735,9\\ 1737,1\\ 1735,6\\ 1737,2\\ 1735,2\\ 1734,2\\ 1735,2\\ \end{array}$
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ -0,16486\pm16\\ -0,18\pm13\\ -0,19635\pm11\\ -0,20107\pm15\\ -0,20939\pm14\\ -0,26332\pm21\\ -0,26235\pm8\\ -0,2292\pm19\\ -0,23457\pm14\\ -0,23635\pm26\end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \hline 0,90081 \pm 17 \\ \hline 0,0373 \pm 15 \\ \hline 0,00387 \pm 15 \\ \hline 0,00387 \pm 15 \\ \hline 0,01564 \pm 22 \\ \hline 0,05685 \pm 11 \\ \hline 0,20421 \pm 14 \\ \hline 0,19929 \pm 11 \\ \hline 0,2376 \pm 17 \\ \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ 0,51401 \pm 195 \\ 0,4443 \pm 152 \\ 0,38366 \pm 198 \\ 0,97757 \pm 173 \\ 0,97664 \pm 170 \\ 0,96312 \pm 249 \\ 0,96274 \pm 129 \\ 0,94938 \pm 169 \\ 0,94968 \pm 181 \\ 0,94121 \pm 225 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1735,7\\ 1735,7\\ 1735,7\\ 1735,9\\ 1737,1\\ 1735,6\\ 1737,2\\ 1735,2\\ 1735,2\\ 1736,5\\ \end{array}$
334 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374	$-0,10972\pm14$ $-0,12228\pm14$ $-0,12712\pm19$ $-0,13785\pm16$ $-0,16153\pm15$ $-0,16151\pm9$ $-0,16151\pm9$ $-0,16151\pm9$ $-0,16151\pm9$ $-0,17923\pm12$ $-0,18169\pm14$ $-0,10167\pm17$ $-0,11181\pm9$ $-0,15717\pm18$ $-0,16486\pm16$ $-0,19635\pm11$ $-0,20107\pm15$ $-0,20939\pm14$ $-0,26235\pm8$ $-0,2292\pm19$ $-0,23457\pm14$ $-0,28345\pm13$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \hline 0,90081 \pm 17 \\ \hline 0,0373 \pm 15 \\ \hline 0,00387 \pm 15 \\ \hline 0,01564 \pm 22 \\ \hline 0,05685 \pm 11 \\ \hline 0,20421 \pm 14 \\ \hline 0,19929 \pm 11 \\ \hline 0,2376 \pm 17 \\ \hline 0,44519 \pm 11 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1735,7\\ 1735,7\\ 1735,7\\ 1735,7\\ 1735,9\\ 1737,1\\ 1735,6\\ 1737,2\\ 1735,2\\ 1735,2\\ 1736,5\\ 1736,1\\ \end{array}$
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376	$-0,10972\pm14$ $-0,12228\pm14$ $-0,12712\pm19$ $-0,13785\pm16$ $-0,16153\pm15$ $-0,16153\pm15$ $-0,16151\pm9$ $-0,17923\pm12$ $-0,18169\pm14$ $-0,10167\pm17$ $-0,11181\pm9$ $-0,15717\pm18$ $-0,16486\pm16$ $-0,19635\pm11$ $-0,20107\pm15$ $-0,2039\pm14$ $-0,26235\pm8$ $-0,2292\pm19$ $-0,23457\pm14$ $-0,23457\pm13$ $-0,28345\pm13$ $-0,21757\pm19$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \hline 0,90081 \pm 17 \\ \hline 0,0373 \pm 15 \\ \hline 0,00373 \pm 15 \\ \hline 0,01564 \pm 22 \\ \hline 0,05685 \pm 11 \\ \hline 0,20421 \pm 14 \\ \hline 0,19929 \pm 11 \\ \hline 0,2376 \pm 17 \\ \hline 0,44519 \pm 11 \\ \hline 0,51816 \pm 14 \\ \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ 0,51401 \pm 195 \\ 0,4443 \pm 152 \\ 0,38366 \pm 198 \\ 0,97757 \pm 173 \\ 0,97664 \pm 170 \\ 0,96312 \pm 249 \\ 0,96274 \pm 129 \\ 0,94938 \pm 169 \\ 0,94968 \pm 181 \\ 0,94121 \pm 225 \\ 0,84804 \pm 129 \\ 0,82518 \pm 163 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1735,7\\ 1735,7\\ 1735,7\\ 1735,7\\ 1735,9\\ 1737,1\\ 1735,6\\ 1737,2\\ 1735,2\\ 1736,5\\ 1736,1\\ 1735,3\\ \end{array}$
334 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	$\begin{array}{c} -0,10972\pm14\\ -0,12228\pm14\\ -0,12712\pm19\\ -0,13785\pm16\\ -0,16153\pm15\\ -0,16151\pm9\\ -0,17923\pm12\\ -0,18169\pm14\\ -0,10167\pm17\\ -0,11181\pm9\\ -0,15717\pm18\\ -0,16486\pm16\\ -0,18\pm13\\ -0,19635\pm11\\ -0,20107\pm15\\ -0,20939\pm14\\ -0,26332\pm21\\ -0,26332\pm21\\ -0,26332\pm21\\ -0,2635\pm8\\ -0,2292\pm19\\ -0,23457\pm14\\ -0,23635\pm26\\ -0,28345\pm13\\ -0,21757\pm19\\ -0,23081\pm10\\ \end{array}$	$\begin{array}{c} 0,04440 \pm 12 \\ \hline 0,72321 \pm 16 \\ \hline 0,74171 \pm 21 \\ \hline 0,72883 \pm 9 \\ \hline 0,76049 \pm 8 \\ \hline 0,78122 \pm 12 \\ \hline 0,76191 \pm 11 \\ \hline 0,72358 \pm 14 \\ \hline 0,871 \pm 14 \\ \hline 0,81322 \pm 21 \\ \hline 0,86688 \pm 19 \\ \hline 0,83876 \pm 15 \\ \hline 0,87538 \pm 15 \\ \hline 0,90081 \pm 17 \\ \hline 0,0373 \pm 15 \\ \hline 0,00373 \pm 15 \\ \hline 0,01564 \pm 22 \\ \hline 0,05685 \pm 11 \\ \hline 0,20421 \pm 14 \\ \hline 0,19929 \pm 11 \\ \hline 0,2376 \pm 17 \\ \hline 0,44519 \pm 11 \\ \hline 0,51816 \pm 14 \\ \hline 0,5433 \pm 14 \\ \end{array}$	$\begin{array}{c} 0,74393 \pm 143 \\ 0,67685 \pm 171 \\ 0,65704 \pm 213 \\ 0,66784 \pm 154 \\ 0,6264 \pm 169 \\ 0,59937 \pm 140 \\ 0,62076 \pm 147 \\ 0,66272 \pm 159 \\ 0,47582 \pm 170 \\ 0,56919 \pm 172 \\ 0,46943 \pm 194 \\ 0,51401 \pm 195 \\ 0,4443 \pm 152 \\ 0,38366 \pm 198 \\ 0,97757 \pm 173 \\ 0,97664 \pm 170 \\ 0,96312 \pm 249 \\ 0,96274 \pm 129 \\ 0,94938 \pm 169 \\ 0,94938 \pm 169 \\ 0,94968 \pm 181 \\ 0,94121 \pm 225 \\ 0,84804 \pm 129 \\ 0,82518 \pm 163 \\ 0,80482 \pm 145 \\ \end{array}$	$\begin{array}{c c} 1736\\ 1734,7\\ 1736,4\\ 1734,8\\ 1735,3\\ 1734,3\\ 1736,3\\ 1734,4\\ 1734,1\\ 1736,2\\ 1735,1\\ 1735,1\\ 1735,7\\ 1735,7\\ 1735,7\\ 1735,7\\ 1735,9\\ 1737,1\\ 1735,6\\ 1737,2\\ 1735,2\\ 1735,2\\ 1736,5\\ 1736,1\\ 1735,3\\ 1734,8\\ \end{array}$

379	-0,23371±20	0,61715±12	0,74923 ±191	1735,4
380	$-0,28575\pm15$	0,61348±16	0,73362 ±163	1734,8
381	-0,20818±3	$0,74762\pm3$	0,62643 ±33	1733,5
382	-0,22251±11	$0,78347\pm15$	0,57836 ±151	1736,2
383	-0,23723±15	$0,71184{\pm}15$	0,65887 ±169	1735,6
384	-0,24612±14	$0,79295\pm19$	0,55273 ±196	1733,6
385	-0,26432±21	$0,77166\pm12$	0,57533 ±245	1734,9
386	-0,29243±22	$0,73227 \pm 16$	0,61298 ±193	1735,9
387	$-0,2085\pm11$	$0,81704{\pm}15$	0,53391 ±153	1734,7
388	-0,21623±16	$0,89025\pm10$	0,39612 ±155	1734,8
389	-0,22908±17	$0,83984{\pm}18$	0,48791 ±201	1734,5
390	-0,22881±19	$0,87019\pm20$	0,43407 ±227	1736,4
391	-0,23443±18	$0,88519\pm18$	0,39951 ±213	1736,5
392	-0,24704±10	$0,81872\pm12$	0,51455 ±136	1734,7
393	-0,26166±23	$0,80956\pm16$	0,52226 ±197	1735,2
394	-0,27149±28	$0,85443\pm11$	0,4401 ±238	1735,9
395	-0,2756±17	0,80911±18	0,51522 ±203	1734,7
396	-0,291±16	0,81161±9	0,50435 ±190	1736,2
397	$-0,29364\pm18$	$0,83994\pm18$	0,45245 ±239	1735
398	-0,29816±15	$0,88345\pm15$	0,35674 ±231	1735,2
399	$-0,20365\pm20$	0,90068±13	0,38074 ±215	1736,1
400	-0,32133±12	$0,01659\pm25$	0,94616 ±226	1737
401	-0,30844±21	$0,11058\pm22$	0,94414 ±247	1737
402	-0,37369±8	$0,1669{\pm}11$	0,91167 ±132	1736,9
403	-0,3248±16	0,24197±11	0,91302 ±160	1736,1
404	-0,34142±17	0,27958±14	0,89565 ±176	1735,4
405	-0,35024±15	$0,29324{\pm}15$	0,8883 ±200	1736,1
406	-0,36998±14	0,26534±16	0,88927 ±183	1736,4
407	-0,32156±22	$0,43259\pm16$	0,84001 ±186	1734,8
408	-0,34882±16	$0,47649 \pm 10$	0,80524 ±159	1735,6
409	-0,30687±13	$0,50471\pm13$	0,80527 ±132	1735,8
410	-0,31718±20	$0,57405\pm19$	0,7517 ±216	1733,9
411	-0,3384±11	0,55464±11	0,75759 ±173	1734,7
412	-0,3437±6	$0,51417\pm16$	0,78283 ±128	1734
413	-0,36433±17	0,57731±12	0,72908 ±139	1736
414	-0,30448±11	0,77913±15	0,54402 ±170	1734,4
415	-0,3068±14	0,79007±15	0,52777 ±168	1735,4
416	-0,35762±9	0,79043±12	0,49338 ±127	1734,7
417	-0,37729±18	$0,78785\pm24$	0,48488 ±247	1736,5
418	-0,30396±14	0,80222±14	0,51192 ±166	1736,4
419	-0,31557±16	$0,86359\pm15$	0,38723 ±202	1734
420	-0,35292±13	$0,85325\pm14$	0,3777 ±157	1734
421	-0,37937±20	0,84133±21	0,3802 ±238	1734,9
422	-0,40056±18	$0,82287\pm15$	0,39795 ±180	1734,6
423	-0,49094±36	$0,0922 \pm 41$	0,86458 ±421	1735,5
424	-0,44621±14	0,10167±16	0,88852 ±167	1737,2
425	-0,49568±15	0,17316±13	0,85038 ±154	1737,1
426	-0,4205±13	0,20029±11	0,88342 ±129	1735,8
427	-0,42876±23	0,21178±25	0,87751 ±246	1737
428	-0,41902±21	0,38857±16	0,81926 ±203	1736,1

100	0 11500 00	0.00010 10	0.02 (00. 010	1705 1
429	-0,44532±22	0,33819±18	0,82699 ±219	1735,1
430	-0,46347±22	0,31622±19	0,82743 ±226	1/3/,6
431	-0,4694±16	0,48464±14	$0,73651 \pm 165$	1736,1
432	-0,4982±21	0,46227±17	0,73205 ±208	1736,2
433	-0,42681±14	0,56469±11	0,7046 ±131	1735,9
434	-0,43937±24	0,52317±20	0,7276 ±241	1734,8
435	-0,46962±12	0,56084±10	0,67968 ±127	1735,5
436	-0,49526±8	0,59032±6	0,63491 ±77	1735,4
437	-0,42848±13	$0,6032{\pm}10$	0,66932 ±120	1734,1
438	-0,44439±16	0,65181±12	0,61153 ±149	1734,9
439	-0,47728±16	0,61145±13	0,62881 ±157	1735,6
440	-0,49655±14	$0,65215\pm10$	0,56992 ±120	1735,2
441	-0,45668±5	0,73675±4	0,49459 ±48	1734,6
442	-0,46887±20	0,79428±17	0,38305 ±204	1735,9
443	-0,47417±16	0,70293±16	0,52636 ±171	1734,6
444	-0,50968±12	$0,07614\pm18$	0,85606 ±180	1736,7
445	-0,51722±16	0,0025±13	0,85414 ±157	1735,6
446	$-0,53048\pm12$	0,09874±13	0,8405 ±155	1736
447	-0,53631±14	$0,05561\pm11$	0,84213 ±139	1738
448	-0,59392±13	0,01189±14	0,80341 ±166	1736,7
449	-0,59811±8	$0,04046\pm7$	0,80036 ±80	1738,1
450	-0,52384±19	0,16125±21	0,83566 ±241	1737
451	-0,58544±15	$0,12424\pm22$	$0,79977 \pm 222$	1736,2
452	-0,50984±13	0,3416±11	0,78842 ±128	1736,6
453	-0,52206±9	0,35913±7	0,77154 ±90	1735,3
454	-0,52683±14	0,35281±9	0,77193 ±155	1736,3
455	-0,56063±9	0,35581±8	0,74617 ±95	1736,1
456	-0,59576±16	0,36166±11	0,71488 ±168	1735,3
457	-0,5085±16	0,41639±13	0,7524 ±164	1736,4
458	-0,52782±20	0,46252±17	0,71056 ±205	1735,9
459	-0,57523±22	0,497±25	0,64725 ±236	1735,3
460	-0,5853±12	$0,44608\pm25$	0,67566 ±221	1736,4
461	-0,50806±12	0,5813±10	0,63422 ±124	1736,6
462	-0,51028±19	0,56372±15	0,64813 ±187	1736,6
463	-0,52167±15	0,59615±15	0,60874 ±184	1736,4
464	-0,52166±12	0,54177±10	0,6571 ±119	1735,9
465	-0,53618±16	0,54112±13	0,64759 ±160	1737,8
466	-0,55657±13	0,66481±11	0,49432 ±134	1734,7
467	-0,55893±12	0,58129±11	0,58815 ±175	1734,8
468	-0,53804±17	0,65432±14	0,52923 ±176	1736,1
469	-0,54023±13	0,67321±9	0,50198 ±144	1735,5
470	-0,58528±16	0,65305±18	0,47615 ±185	1734,4
471	-0,55517±9	0,60633±7	0,56734 ±89	1736,1
472	-0,54926±17	0,77119±14	0,31556 ±167	1734,6
473	-0,64517±16	0.00642±18	0,761 ±205	1734,1
474	-0,64967±15	0,0856±17	0,75407 ±200	1736.4
475	-0,68691±16	0,08127±18	0,7192 ±206	1734.4
476	-0,6091±10	0,14029±8	0.78006 ±98	1737.4
477	-0.65687±9	0.17354±8	0.73259 ±94	1736.6
478	-0.69313±20	0.19685+17	0.69229 +204	1736.7
., 5	.,	-,	-,	1.00,1

470	0 (505(10	0.07542.10	0.70521 110	1725 1
4/9	$-0,65056\pm12$	0,27543±10	$0,70531 \pm 119$	1/35,1
480	$0,65041\pm10$	$0,2/525\pm7$	$0,70569 \pm 105$	1/35,3
481	-0,62603±16	$0,33/15\pm14$	$0,701 \pm 165$	1/35,5
482	-0,65156±13	0,46776±11	$0,59371 \pm 130$	1/34,5
483	-0,69184±15	0,42723±9	$0,5/821 \pm 183$	1/34,2
484	-0,62801±12	0,50/31±10	0,58881 ±124	1736,8
485	-0,60494±7	0,64482±5	0,4635 ±66	1735,1
486	-0,65447±21	0,62252±17	0,42628 ±211	1736
487	-0,68662±15	0,68686±10	$0,22843 \pm 160$	1734,1
488	-0,69111±19	0,60657±16	0,38851 ±193	1735,1
489	-0,64139±6	0,7182±5	0,26306 ±61	1735
490	-0,70277±8	0,01966±7	0,70899 ±81	1735,4
491	-0,71137±24	0,0198±19	0,70047 ±230	1735,6
492	-0,71429±16	0,06887±21	0,69424 ±212	1735,4
493	-0,72283±8	0,08125±16	0,68404 ±134	1735,5
494	-0,73209±15	0,09903±17	0,67151 ±193	1735,2
495	-0,73724±14	0,07645±16	0,66963 ±187	1736,2
496	-0,74037±17	0,06957±19	0,6673 ±216	1736,6
497	-0,7608±16	0,03356±18	0,64607 ±206	1735,8
498	-0,77882±15	0,08991±17	0,6192 ±194	1736,4
499	$-0,78095\pm10$	0,06161±11	0,61893 ±150	1735,3
500	$-0,78095\pm10$	0,06161±11	0,61925 ±150	1735,6
501	-0,70048±13	0,18849±13	0,68591 ±160	1735,2
502	$-0,70049\pm25$	0,18267±16	0,68868 ±201	1736,7
503	-0,73416±26	$0,17125\pm24$	0,65354 ±227	1734,1
504	-0,76469±19	0,15139±19	0,62447 ±233	1736
505	-0,79948±17	0,13956±14	0,58284 ±170	1736,7
506	-0,70211±16	$0,21838 \pm 18$	0,67546 ±209	1735,4
507	-0,70497±9	$0,28054\pm9$	0,65039 ±81	1737
508	-0,711±14	$0,23865 \pm 14$	0,65986 ±133	1736,3
509	-0,71633±4	$0,24142\pm5$	0,65368 ±39	1737
510	$-0,77744\pm20$	0,20961±11	0,58901 ±160	1734
511	-0,78087±13	0,29842±12	0,54573 ±122	1735,2
512	-0,78087±13	0,29842±12	0,54511 ±122	1734,6
513	-0,79385±15	0,27306±14	0,53998 ±141	1734,9
514	$-0,79608\pm8$	$0,28355 \pm 9$	0,53138 ±78	1735,1
515	-0,734±17	0,36619±16	0,56951 ±156	1735,7
516	$-0,75979\pm27$	0,38276±15	0,52109 ±231	1734
517	-0,79193±17	0,32786±16	0,51114 ±158	1734,5
518	-0,70711±13	0,46123±13	0,53381 ±126	1736,1
519	-0,75717±10	0,48315±23	0,43744 ±122	1736,4
520	-0,76442±13	0,46503±12	0,44422 ±119	1736,3
521	-0,78513±18	0,45502±17	0,41734 ±167	1736,1
522	$-0,78534\pm9$	0,45487±24	0,41534 ±122	1734,8
523	-0,79512±14	0,43482±13	0,41835 ±130	1734,9
524	-0,73369±16	0,54697±17	0,39841 ±153	1734,8
525	-0,86717±22	0,07361±22	0,49018 ±206	1736,1
526	-0,87151±8	0,05303±8	0,48371 ±76	1734,9
527	-0,80581±7	0,1577±4	0,56713 ±59	1734,5
528	-0,80652±9	0,16856±9	0,56485 ±86	1736,3

520	0.80685+10	0 12921+0	0.5704 ± 00	1724.2
530	$-0,80083\pm10$ 0.81212+10	$0,13821\pm9$ 0.11003+10	$0,5704 \pm 90$ 0.56017 ±03	1734,2
531	$-0,81212\pm10$ 0.87713±5	$0,11995\pm10$ 0.15204+5	$0,30917 \pm 93$ 0.45343 ± 42	1736,5
522	$-0,87713\pm 3$	$0,13204\pm 3$	$0,43343 \pm 42$ 0.45706 ± 102	1730,4
532	$-0,04240\pm11$	$0,27790\pm11$	$0,43790 \pm 103$	1735,5
524	$-0,83343\pm 20$	0,24031±20	$0,4300 \pm 192$	1730,4
525	-0.87209 ± 8	$0,20227\pm 8$	$0,44119 \pm 79$	1734,7
555	-0.81233 ± 13	0,38929±13	$0,42935 \pm 144$	1734,9
530	-0,82825±13	0,30584±10	$0,4049 \pm 159$	1/34,3
537	-0,854/1±15	0,35835±8	$0,37241 \pm 130$	1/30
538	-0,90533±7	$0,19775\pm7$	$0,3/1/1 \pm 0.0000000000000000000000000000000000$	1/35,4
539	$-0,000\pm22$	$-0,00788\pm22$	$0,99927 \pm 223$	1736,9
540	$-0,01100\pm13$	$-0,03019\pm13$	$0,99/0/\pm 103$	1/30,4
541	$-0,02047\pm11$	-0,08011±11	0,99576 ±115	1/30,/
542	-0,04401±11	$-0,03438\pm10$	$0,99762 \pm 129$	1/30,/
545	-0,05589±11	-0,08/1±11	0,99406 ±112	1/3/,1
544	$-0,09112\pm10$	-0,05582±11	$0,993/8 \pm 10/$	1737,2
545	-0,09109±17	-0,05591±17	$0,99284 \pm 1/4$	1/35,0
540	-0,01491±11	$-0,14/95\pm11$	0,98818 ±114	1/36,9
547	$-0,08753\pm13$	$-0,10033\pm13$	$0,98067 \pm 132$	1/35,5
548	-0,08/6/±/	-0,17991±9	0,97924 ±85	1737,2
549	-0,09053±11	$-0,11914\pm12$	$0,98824 \pm 116$	1/3/,2
550	-0,01±12	$-0,26897\pm12$	$0,96146 \pm 127$	1/35,4
551	-0,02113±12	$-0,29535\pm13$	$0,95342 \pm 112$	1735,2
552	-0,046/±16	-0,23076±16	0,97048 ±166	1/35,/
553	-0,05086±/	-0,29325±7	$0,9541/\pm 6/$	1/3/,3
554	-0,07553±11	$-0,2771\pm12$	0,95726 ±136	1/3/,1
555	-0,08565±13	-0,02219±14	0,99532 ±141	1736,8
556	-0,0255±14	-0,309/4±14	0,94957 ±140	1736,6
557	-0,02689±13	-0,38813±11	0,92075 ±136	1737,4
558	-0,02571±13	-0,30982±13	0,9486/ ±131	1735,2
559	-0,02784±13	-0,34869±13	0,93619 ±135	1737,1
560	-0,06683±12	$-0,361/5\pm12$	0,9284 ±116	1735,7
561	-0,07473±10	-0,39209±10	0,91595 ±97	1736,6
562	-0,08022±12	-0,36756±12	0,92505 ±139	1735,7
563	-0,00046±10	-0,41614±10	0,90948 ±92	1738,4
564	-0,02008±8	-0,42761±10	0,90308 ±80	1737,1
565	-0,0305±9	-0,44046±11	0,89527 ±95	1735
566	-0,05769±17	-0,4861±17	0,87072 ±172	1736,2
567	-0,06691±10	-0,45334±12	0,888/3 ±112	1738
568	-0,07253±17	-0,42604±17	0,90117 ±217	1737,1
569	-0,07722±21	-0,48651±19	0,86947 ±201	1736,9
570	-0,09686±13	-0,47287±11	0,87572 ±126	1738
571	$-0,0965\pm14$	-0,41435±8	0,90379 ±119	1736,2
572	-0,05574±15	-0,61586±16	0,78436 ±154	1736
573	-0,08391±15	-0,63408±16	0,76777 ±137	1736,9
574	-0,04286±11	-0,75906±11	0,64987 ±130	1738,4
575	-0,01227±12	-0,82948±11	0,55626 ±108	1736
576	-0,02136±17	-0,81112±18	0,5844 ±173	1738
577	-0,03777±11	$-0,85954\pm7$	0,50782 ±82	1736,5
578	$-0,10266\pm15$	$-0,01218\pm15$	0,9939 ±137	1736,8

579	-0.14109+21	-0.03158+19	0.98905 +214	1737 3
580	-0 14991+14	-0.07754+17	0.98509 ± 211	1737,3
581	-0.11276+10	-0.13431+10	0.98381 + 135	1736.9
582	-0.11676+20	-0.1589+21	0,98043 +235	1738.2
583	-0 11932+9	-0.15093+11	0.98047 + 93	1736,2
584	-0.13011+8	-0.10798+8	0,98438 +74	1736
585	-0.15305+16	-0.18891+15	0.96932 ± 163	1730
586	-0 10473+13	-0.23699 ± 13	0.96548 ± 136	1737 5
587	-0 11611+14	-0.26063 ± 14	$0,95658 \pm 144$	1735
588	-0.12892+21	-0.27883+23	$0,93050 \pm 144$ 0.94951 +212	1734.6
589	-0.13231+15	-0.2114+15	0.96705 + 151	1735.8
590	-0.13302+16	-0.26614 ± 17	0.95228 ± 168	1733,0
591	-0.1761+20	-0.25169 ± 16	0.95133 +180	1737.6
592	-0.1893+13	-0.25065+13	0.94904 +151	1737,5
593	-0 19702+9	-0.20022+13	0.95847 + 128	1736
594	-0.13865+9	-0.37942+14	0.91269 +152	1734.8
595	-0.16447+8	-0.379+20	0.91001 +163	1737,1
596	-0.16879+18	-0.3125+16	0.93443 +187	1737.5
597	-0.20073+19	-0.37317+20	0.90381 +224	1735
598	-0.15837±20	-0.44896±21	0.87752 ±236	1735.2
599	-0.16152±11	-0.4372 ± 12	0.88457 ±128	1737.8
600	-0.17517±14	-0.42627 ± 10	0.88647 ±132	1736.6
601	-0.18557±19	-0.53639±15	0.82261 ±184	1737.1
602	-0.19779±12	-0.61939±10	0.75965 ±117	1738
603	-0,10132±11	-0,75636±16	0,64538 ±188	1737,1
604	-0,10691±5	-0,79392±4	0,59645 ±50	1735,9
605	-0,15364±9	-0,72296±13	0,67263 ±143	1737
606	-0,17774±4	-0,74745±3	0,63899 ±46	1736,9
607	$-0,10423\pm20$	-0,81792±21	0,564 ±240	1736,3
608	-0,16434±18	-0,84766±18	0,50273 ±210	1736,6
609	-0,21813±12	-0,06017±10	0,97286 ±116	1736,1
610	-0,22927±10	-0,02476±12	0,97191 ±125	1736,2
611	-0,24468±10	-0,02811±8	0,96851 ±98	1736,9
612	-0,26818±13	-0,07262±9	0,95996 ±143	1737
613	-0,28968±15	-0,024±17	0,9554 ±170	1735,7
614	-0,20656±11	-0,1737±11	0,96191 ±127	1736,5
615	-0,21904±10	-0,11957±18	0,9678 ±158	1737,2
616	-0,25216±17	-0,13278±17	0,95794 ±222	1737,1
617	-0,26903±19	-0,14934±20	0,95016 ±222	1735,9
618	-0,27192±11	-0,16497±16	0,94615 ±159	1734,9
619	-0,29184±17	-0,19295±17	0,9344 ±198	1734,2
620	-0,29599±21	-0,17718±22	0,93722 ±249	1735,8
621	-0,21206±9	-0,23782±15	0,94712 ±146	1736,9
622	-0,24123±16	-0,21559±16	0,94585 ±183	1737,5
623	-0,24727±19	-0,20779±15	0,94507 ±183	1735,9
624	-0,25537±20	-0,25157±20	0,93277 ±228	1736,8
625	-0,28591±18	-0,235±18	0,9279 ±203	1736,3
626	-0,29418±11	-0,29261±12	0,90771 ±133	1734,7
627	-0,19992±12	-0,37363±20	0,90345 ±184	1734,4
628	-0,29342±15	-0,37894±11	0,87593 ±142	1735,4

629	-0.208/13+15	-0.49467+15	0.8/311 + 173	1737.2
630	-0.20987+14	-0.44623+14	0.86928 +161	1737,2
631	-0.2178+12	-0.48544+29	0.84631 + 238	1737,1
632	-0.2466+22	-0,48947+22	0.83465 ± 245	1737,5
633	-0.26837+15	-0.45576+15	0.84748 + 175	1736.3
634	-0.28889+17	-0.42078+17	0.85802 +193	1735,2
635	-0.22003+24	-0 53916+16	0.81172 +267	1736.4
636	-0.27523+13	-0 59583+18	0.75363 + 199	1737
637	-0.27644+16	-0 5083+16	0.81453 +209	1736.6
638	-0.27596+26	-0.6096+17	0.74178 +214	1736,4
639	-0.30175+16	-0.08391+13	0.94921 +151	1737.3
640	-0.31936+19	-0.04606+24	0.94519 +247	1735.9
641	-0.35606+17	-0.01143+19	0.93284 +218	1735.6
642	-0.35607+17	-0.09571+21	0.92852 + 214	1736.4
643	-0.3684+17	-0.09434+18	0.92405 +201	1736.8
644	-0.36907±17	-0.07039 ± 17	0.92658 ±193	1737.9
645	-0.30916±15	-0.17653 ± 18	0.93348 ±185	1736.5
646	-0.3606±11	-0.18935 ± 16	0.91206 ±157	1736.1
647	-0,31582±21	-0.20097±22	0,92592 ±246	1735,9
648	-0,33382±20	-0,26464±20	0,90298 ±229	1735,4
649	-0,34602±15	-0.29183±15	0.88917 ±173	1734,2
650	-0,35422±18	-0,24777±19	0,8995 ±211	1734,6
651	-0,38206±20	-0,28394±20	0,8769 ±232	1734,2
652	-0,3864±19	-0,25204±19	0,88618 ±219	1736,5
653	-0,30607±19	-0,30973±16	0,89862 ±195	1735,6
654	-0,31126±15	-0,3184±15	0,89389 ±175	1735,8
655	-0,34405±14	-0,37076±9	0,86116 ±122	1735,9
656	-0,35361±12	-0,31404±12	0,88017 ±141	1736,7
657	-0,35347±6	-0,35285±13	0,86492 ±133	1736
658	-0,3275±11	-0,48065±11	0,8107 ±125	1734,2
659	-0,31125±10	-0,55287±9	0,77162 ±136	1736,3
660	-0,32166±14	-0,54137±14	0,77627 ±160	1737,4
661	-0,35705±16	$-0,56808 \pm 17$	0,74066 ±189	1737
662	-0,35704±16	$-0,56802 \pm 14$	0,74088 ±181	1737,3
663	-0,32162±12	-0,63198±11	0,70489 ±147	1737,8
664	-0,32538±13	-0,66556±11	0,67139 ±134	1737,8
665	-0,32598±19	-0,62461±19	0,70874 ±248	1737
666	$-0,3662\pm15$	-0,68411±15	0,62949 ±177	1736,7
667	-0,31954±23	-0,79759±19	0,51129 ±230	1737,8
668	-0,33829±13	-0,70993±13	0,61624 ±174	1736,5
669	-0,34824±14	-0,71843±14	0,59987 ±159	1735,7
670	$-0,3598\pm17$	-0,76837±8	0,5257 ±235	1734,8
671	-0,37569±12	-0,73676±10	0,5607 ±119	1736,7
672	-0,31979±23	-0,85317±19	0,41085 ±229	1737,2
673	$-0,42258\pm14$	-0,05141±12	0,90359 ±146	1736,1
674	-0,44441±12	-0,03361±12	0,89442 ±138	1736,9
675	-0,44716±10	$-0,00626\pm14$	0,89305 ±136	1736
676	-0,48756±13	$-0,02589\pm12$	0,87208 ±126	1737,2
677	-0,49165±20	-0,01189±17	0,87005 ±202	1737,1
678	-0,42875±18	$-0,16354\pm18$	0,88728 ±209	1736,2

679	-0,46489±10	-0,18161±14	0,86478 ±139	1735,4
680	-0,48724±12	-0,18313±11	0,85163 ±120	1734,8
681	-0,48856±15	0,12928±24	0,86216 ±200	1737
682	-0,41953±16	-0,21548±9	0,8803 ±160	1735,8
683	-0,42524±12	-0,24403±12	0,87018 ±114	1736
684	-0,44081±18	-0,25082±17	0,86014 ±170	1735,5
685	-0,48789±10	-0,22983±5	0,84079 ±85	1736,2
686	-0,49438±15	$-0,20405\pm11$	0,84261 ±178	1734,7
687	-0,43773±17	-0,39488±9	0,80601 ±145	1735,7
688	-0,41679±10	$-0,40104\pm8$	0,8142 ±93	1735,9
689	-0,42599±19	$-0,48948\pm10$	0,75945 ±162	1736,2
690	-0,49649±10	$-0,40323\pm10$	0,76684 ±102	1735,6
691	-0,41934±11	-0,51698±7	0,74516 ±85	1736,7
692	$-0,42808\pm10$	-0,57813±9	0,69339 ±139	1736,6
693	-0,43478±25	$-0,55203\pm14$	0,71053 ±221	1736,9
694	-0,43651±23	$-0,51549\pm16$	0,736 ±159	1736,3
695	$-0,45507\pm18$	-0,50161±7	0,73495 ±159	1737,1
696	-0,46229±16	$-0,52922\pm7$	0,70935 ±137	1735,5
697	-0,49654±16	-0,51757±13	0,69524 ±190	1736,2
698	-0,42464±29	$-0,60985\pm14$	0,6678 ±177	1736,5
699	-0,45802±13	$-0,68965\pm19$	0,55839 ±187	1735,7
700	-0,46386±9	$-0,64546\pm12$	0,60451 ±108	1735,7
701	-0,48791±15	$-0,62395\pm17$	0,60847 ±158	1736
702	-0,41516±10	$-0,73288 \pm 13$	0,53743 ±139	1736,6
703	-0,43868±15	$-0,7981\pm12$	0,40995 ±166	1735,9
704	-0,43955±23	-0,7454±23	0,50029 ±234	1737,3
705	-0,47016±23	$-0,73149\pm23$	0,49184 ±233	1736,4
706	-0,49134±7	-0,7501±10	0,44104 ±102	1736,9
707	-0,50906±12	$-0,05217\pm14$	0,85749 ±133	1735,6
708	-0,50928±21	$-0,03945\pm16$	0,85802 ±204	1735,6
709	-0,57391±19	$-0,08699 \pm 13$	0,81335 ±208	1736,8
710	-0,58203±6	$-0,1047{\pm}18$	0,80455 ±140	1735,5
711	-0,51772±13	$-0,26295\pm12$	0,81285 ±166	1736,3
712	$-0,54204\pm18$	$-0,23226\pm15$	0,80668 ±184	1736,8
713	-0,56591±20	$-0,23858{\pm}18$	0,78731 ±201	1735,5
714	-0,52699±17	-0,36163±9	0,76775 ±193	1736,3
715	-0,53234±19	$-0,37387\pm19$	0,75722 ±192	1735,1
716	-0,56048±17	-0,36792±14	0,73994 ±211	1735,5
717	-0,56361±10	$-0,38584\pm9$	0,72898 ±127	1736,3
718	-0,56855±11	$-0,37304\pm11$	0,73111 ±115	1735,4
719	-0,57582±16	$-0,39703\pm16$	0,71145 ±163	1734,1
720	-0,58108±20	-0,35613±12	0,72949 ±144	1735,2
721	-0,58103±13	-0,356±12	0,7293 ±136	1734,8
722	-0,59751±9	-0,31934±9	0,73243 ±84	1734,1
723	-0,53174±18	$-0,43425\pm18$	0,72499 ±185	1735,4
724	-0,53472±15	-0,45952±7	0,70808 ±132	1736,8
725	-0,5576±20	-0,41723±12	0,7173 ±159	1737,7
726	-0,57237±22	-0,44604±11	0,68594 ±146	1735,6
727	-0,5959±16	-0,40663±15	0,69121 ±167	1736,5
728	-0,59555±23	-0,40069±9	0,69599 ±131	1737,8

720	0.50924+17	0 41 442 + 19	0.69207 +012	1725.0
729	-0,59834±17	$-0,41442\pm18$	$0,08327 \pm 213$	1735,2
730	$-0,52505\pm14$	-0,50506±13	$0,68442 \pm 146$	1/3/,4
731	-0,55280±22	-0,51095±18	$0,008/5 \pm 221$	1/30,/
732	$-0,53011\pm10$	-0,54853±17	$0,02905 \pm 1/0$	1/3/,4
/33	-0,59656±21	-0,552/±19	$0,58115 \pm 241$	1/3/,3
734	-0,5631±10	-0,63657±9	$0,52592 \pm 126$	1/3/,1
/35	-0,57042±13	$-0,6544\pm13$	0,49471 ±152	1/36,/
/36	-0,58218±17	$-0,61243\pm16$	0,53323 ±158	1/36,/
/3/	-0,59267±16	$-0,64615\pm15$	0,48217 ±205	1739,2
/38	-0,6052±11	-0,08159±11	0,79085 ±129	1/36,/
739	-0,63414±18	-0,05421±18	$0,77082 \pm 209$	1/3/,4
/40	-0,65063±16	-0,04016±15	$0,757 \pm 216$	1/36,3
/41	-0,65267±19	-0,06068±18	0,75449 ±196	1/3/,2
742	-0,65561±13	-0,0822/±13	0,74847 ±169	1/35,3
743	-0,6893±15	-0,05415±16	0,71992 ±158	1734,9
744	-0,69599±12	-0,07903±8	0,71207 ±135	1736,1
745	-0,611±19	-0,18509±19	0,76787 ±197	1735,7
746	-0,62618±14	-0,12399±14	0,76742 ±147	1735
747	-0,64677±22	-0,19526±13	0,73526 ±240	1735,5
748	-0,66144±20	-0,18524±18	0,72571 ±225	1736,8
749	-0,67466±17	-0,13704±14	0,7242 ±209	1736,7
750	-0,68806±11	$-0,10325\pm11$	0,71635 ±146	1735,7
751	-0,61662±18	-0,26745±20	0,73735 ±184	1734,1
752	-0,65278±10	-0,28313±10	0,70176 ±129	1737
753	-0,6727±7	-0,28786±8	0,68035 ±77	1736,6
754	-0,68262±20	-0,25879±9	0,68055 ±182	1734,7
755	-0,69295±14	-0,26378±11	0,6684 ±161	1735,1
756	-0,70022±11	-0,24751±11	0,66628 ±113	1734,2
757	-0,60217±25	$-0,30955\pm12$	0,73601 ±213	1738,2
758	-0,62397±12	-0,34798±12	0,69897 ±156	1737,2
759	-0,65384±21	-0,3169±22	0,68566 ±219	1736,4
760	-0,6652±16	$-0,3823\pm16$	0,63962 ±163	1736,2
761	-0,61657±3	-0,41608±3	0,66561 ±32	1734,9
762	-0,65143±16	$-0,41648\pm16$	0,63156 ±139	1735,2
763	-0,65139±13	-0,41649±13	0,63235 ±113	1736
764	-0,6251±10	$-0,5814\pm10$	0,51755 ±98	1735,2
765	-0,60493±12	-0,62837±12	0,48965 ±141	1738,6
766	-0,61109±17	-0,66991±18	0,4199 ±214	1736,8
767	-0,64952±21	-0,63636±22	0,41232 ±220	1735,3
768	-0,66106±16	-0,62435±16	0,41436 ±162	1736,8
769	-0,70501±13	-0,05561±16	0,70424 ±150	1734,7
770	-0,71814±7	-0,06458±7	0,69034 ±72	1735
771	-0,7194±13	-0,09579±14	0,68511 ±135	1734,7
772	$-0,78614\pm10$	-0,09791±10	0,60891 ±102	1736,7
773	-0,71092±9	$-0,16007\pm10$	0,68301 ±115	1736
774	-0,7112±8	-0,16017±9	0,68278 ±78	1736,1
775	-0,75258±17	-0,11551±16	0,64674 ±157	1736,4
776	-0,72198±19	-0,2558±18	0,64003 ±179	1734,9
777	-0,73308±17	-0,22432±16	0,63978 ±170	1735,5
778	-0,74531±18	-0,23883±17	0,62056 ±165	1736

770	0.74041.02	0.27052 . 15	0 5 4 9 9 7	1726.0
79	$-0,74841\pm23$	-0,37052±15	$0,54887 \pm 247$	1736,9
/80	-0,79952±16	-0,3435±15	0,49051 ±146	1/36,2
/81	-0,/6468±18	-0,41458±17	0,49298 ±168	1/3/,8
782	$-0,70483\pm17$	$-0,50097\pm21$	0,50149 ±198	1/3/,4
/83	-0,82511±6	-0,04438±8	0,56067 ±74	1/35,6
/84	-0,83989±13	$-0,00618\pm13$	0,54132 ±138	1/36,8
785	-0,84293±12	-0,01388±12	0,53528 ±115	1735,7
786	-0,84802±19	-0,09151±26	0,51966 ±242	1736
787	-0,88783±10	-0,01343±12	0,45699 ±140	1735,7
788	-0,89889±17	-0,03202±16	0,43217 ±154	1734,4
789	-0,90045±16	-0,06384±15	0,42726 ±147	1735,9
790	-0,8285±23	-0,18057±22	0,52641 ±215	1734,7
791	-0,89517±9	-0,138/4±9	0,42109 ±83	1736,3
792	-0,82038±13	-0,22874±13	0,52102 ±123	1735,3
793	0,00309±14	-0,06175±10	0,99785 ±190	1737,7
794	0,03616±15	-0,03731±15	0,99839 ±165	1737,6
795	0,04213±12	-0,07318±13	0,99692 ±118	1739
796	$0,04658\pm10$	-0,08252±26	0,99517 ±133	1737,5
797	$0,05114\pm24$	-0,00741±26	0,99845 ±224	1737,7
798	0,05161±21	-0,03868±20	0,998 ±198	1738,2
799	$0,0037\pm26$	-0,19114±24	0,98089 ±238	1737
800	$0,01104\pm17$	-0,16309±13	0,98688 ±150	1738,7
801	0,01658±16	-0,1035±23	0,99426 ±201	1737,7
802	0,03183±9	-0,16525±7	0,98555 ±132	1737,8
803	0,03664±9	-0,14167±9	0,989 ±133	1737,7
804	0,03746±14	-0,12079±13	0,99136 ±134	1737
805	$0,05462\pm2$	-0,15649±3	0,98598 ±28	1737,8
806	0,06136±9	-0,11813±11	0,9907 ±138	1737,4
807	0,06328±13	-0,1793±13	0,98218 ±137	1738,8
808	0,06336±13	-0,17928±13	0,98134 ±132	1737,4
809	0,07224±12	-0,15535±7	0,98496 ±149	1737,7
810	0,07851±14	$-0,14634\pm14$	0,98591 ±143	1737,8
811	$0,07815 \pm 16$	-0,17195±16	0,98061 ±169	1735,7
812	$0,08885 \pm 33$	-0,16771±18	0,98149 ±226	1737,5
813	0,04279±14	-0,29188±14	0,95506 ±143	1737,4
814	$0,05379\pm25$	$-0,23435\pm22$	0,97036 ±233	1737,6
815	0,09598±14	-0,28467±12	0,9533 ±115	1737,3
816	$0,08344{\pm}20$	-0,26473±11	0,96042 ±133	1737,6
817	0,09552±13	-0,27991±13	0,9542 ±136	1736,3
818	$0,0055 \pm 14$	-0,38908±14	0,92047 ±144	1737
819	$0,01184\pm7$	-0,33235±7	0,9426 ±68	1737,3
820	0,0141±18	-0,38256±18	0,92277 ±202	1736,4
821	0,01472±17	-0,30999±17	0,95109 ±162	1738,9
822	0,02052±13	-0,31851±16	0,94705 ±198	1737
823	0,02251±12	-0,3577±12	0,93313 ±111	1737,4
824	0,05022±14	-0,36184±14	0,93129 ±143	1738,8
825	0,0616±13	-0,36538±13	0,92723 ±138	1735,5
826	0,07185±23	$-0,38555\pm24$	0,91873 ±241	1736,3
827	0,07324±12	-0,37083±13	0,92512 ±129	1737
828	0,07324±22	-0,3035±22	0,95003 ±227	1738,1

829	0,09415±22	-0,31106±23	0,94547 ±229	1737,7
830	$-0,0007\pm18$	$-0,41642\pm18$	0,90966 ±172	1738,9
831	0,01184±16	-0,4197±15	0,90794 ±148	1738,7
832	0,03474±9	-0,40065±12	0,91475 ±99	1736,8
833	$0,04897 \pm 18$	$-0,45525\pm18$	0,88851 ±185	1737,3
834	$0,0649 \pm 18$	-0,42261±20	0,90333 ±184	1737,1
835	0,08631±15	$-0,43544\pm17$	0,89545 ±166	1737,1
836	0,09152±21	-0,41102±22	0,9072 ±221	1738,4
837	$0,07862 \pm 14$	-0,57893±14	0,81038 ±157	1736,4
838	$0,08034{\pm}14$	-0,5696±12	0,81641 ±145	1735,9
839	$0,09945\pm20$	-0,54703±21	0,83001 ±210	1736,4
840	0,07221±12	$-0,69384\pm10$	0,71579 ±146	1737,2
841	$0,00835\pm24$	-0,78171±24	0,62034 ±247	1734,6
842	0,0156±18	-0,79519±18	0,60438 ±188	1736,2
843	0,08581±11	-0,9013±11	0,42372 ±125	1737,4
844	0,12116±23	-0,05017±24	0,99166 ±239	1738,6
845	0,12786±15	$-0,08751\pm19$	0,98743 ±162	1737,3
846	0,12799±14	$-0,0366\pm17$	0,99176 ±150	1739,2
847	0,13153±14	$-0,07059 \pm 14$	0,98907 ±145	1738,6
848	0,14059±13	$-0,05486 \pm 15$	0,98869 ±132	1738,3
849	0,16171±12	-0,019±12	0,98637 ±132	1737,6
850	0,17016±21	$-0,06764\pm24$	0,9829 ±224	1737,8
851	0,17925±20	-0,07032±21	0,98114 ±236	1737,8
852	0,12526±16	-0,13786±16	0,9823 ±164	1737,8
853	0,12787±22	$-0,15209\pm16$	0,97986 ±177	1737,8
854	0,13166±14	-0,19661±14	0,97155 ±161	1738
855	0,14099±15	-0,12876±15	0,98232 ±155	1739,3
856	0,15523±14	$-0,11905\pm14$	0,98061 ±139	1738
857	0,1565±19	-0,18966±19	0,96961 ±192	1738,6
858	0,15704±9	-0,17799±9	0,9706 ±79	1736,7
859	0,18967±18	$-0,145\pm18$	0,97108 ±185	1738,1
860	0,19415±18	$-0,11597 \pm 19$	0,97404 ±188	1738
861	0,10638±8	$-0,25259\pm8$	0,96146 ±137	1737,7
862	0,10861±17	$-0,22421\pm18$	0,96729 ±184	1736,1
863	0,10767±14	$-0,20994\pm13$	0,97163 ±143	1737,9
864	0,11193±16	$-0,28453\pm16$	0,95096 ±163	1736,2
865	0,11603±15	-0,24576±18	0,96292 ±146	1739
866	0,12669±15	$-0,29285\pm16$	0,94746 ±159	1737,7
867	0,1387±14	-0,28808±14	0,94741 ±142	1737,9
868	0,13951±16	-0,27375±16	0,95028 ±168	1735,9
869	0,15081±13	-0,20831±20	0,96525 ±190	1736,2
870	0,15528±13	-0,29683±13	0,94203 ±148	1737,8
871	0,17835±17	-0,28271±18	0,94133 ±178	1736,2
872	0,19288±16	-0,26668±16	0,94462 ±161	1738,6
873	0,11923±13	-0,31317±9	0,94187 ±180	1737,6
874	0,12102±18	-0,39483±29	0,91038 ±222	1737,5
875	0,12251±15	-0,34962±15	0,93 ±171	1740
876	0,12348±17	-0,32764±17	0,93621 ±172	1737,3
877	0,14377±11	-0,3361±14	0,93059 ±117	1737,8
878	0,15544±15	-0,37082±16	0,91629 ±140	1739,2
				1
-----	------------------	---------------------------	--------------	--------
879	0,16238±9	$-0,35505\pm8$	0,91944 ±86	1736,2
880	0,16664±19	-0,3874±19	0,90739 ±191	1739,1
881	0,17676±15	-0,31099±16	0,93367 ±159	1737,8
882	0,13861±18	-0,46027±18	0,87659 ±182	1737,6
883	0,15957±17	-0,47198±18	0,86796 ±164	1739,5
884	0,16177±18	-0,419±17	0,89428 ±170	1739,4
885	0,164±19	$-0,48614\pm20$	0,85816 ±199	1737,8
886	0,13913±13	-0,54092±13	0,82842 ±153	1736,6
887	0,14731±12	-0,52879±12	0,83479 ±118	1736,5
888	0,16938±2	-0,59739±2	0,7832 ±23	1737,2
889	0,17029±16	-0,51583±16	0,83922 ±164	1737,6
890	0,17729±17	-0,56246±17	0,80548 ±174	1735,1
891	0,19615±12	-0,50116±12	0,84326 ±129	1738,7
892	0,12091±20	-0,69136±20	0,71188 ±203	1737,6
893	0,15003±13	-0,60838±13	0,77851 ±137	1737
894	0,17768±14	-0,68778±14	0,70304 ±146	1737,1
895	0,18376±12	-0,60125±12	0,77562 ±126	1735,4
896	0,12498±17	$-0,70602\pm14$	0,69645 ±170	1737,3
897	0,13075±13	$-0,76566 \pm 14$	0,62998 ±157	1738,3
898	0,13662±15	-0,79112±15	0,59624 ±155	1738,1
899	0,15451±13	-0,74377±14	0,64802 ±138	1735,5
900	0,19921±16	-0,77722±16	0,59443 ±160	1735,6
901	0,11708±15	$-0,82645\pm8$	0,5485 ±173	1736
902	0,12667±13	$-0,85687 \pm 14$	0,49979 ±139	1738,2
903	0,12993±18	$-0,84167\pm18$	0,52295 ±228	1737
904	0,13597±14	-0,82639±14	0,54698 ±146	1738,6
905	0,14038±12	-0,81328±12	0,56284 ±127	1736,3
906	0,14303±13	-0,89169±14	0,42895 ±150	1737,7
907	0,20863±15	-0,06666±16	0,97476 ±159	1736,5
908	0,21478±11	$-0,04124\pm14$	0,97615 ±119	1738,7
909	0,22405±18	$-0,07694\pm19$	0,97023 ±169	1735,9
910	$0,22836\pm20$	$-0,03775\pm20$	0,97115 ±203	1735,2
911	0,2494±10	-0,02458±12	0,96763 ±95	1737,3
912	$0,26469\pm22$	$-0,00338\pm22$	0,96306 ±226	1736
913	0,26472±17	-0,01393±18	0,96255 ±180	1735,3
914	0,26886±12	-0,09388±12	0,9581 ±138	1737,3
915	0,27111±23	-0,04196±23	0,96097 ±232	1737
916	0,29034±13	-0,04688±16	0,95498 ±136	1736,8
917	0,29072±16	$-0,048\pm22$	0,95387 ±227	1735,2
918	0,21376±16	-0,14233±17	0,96737 ±159	1739,6
919	0,24448±16	-0,18169±16	0,95267 ±161	1738,4
920	0,26111±7	$-0,15862\pm8$	0,95234 ±73	1738,4
921	0,2635±19	-0,15289±19	0,95271 ±191	1738,5
922	0,29298±17	-0,18744±18	0,9376 ±179	1738,2
923	0,29364±12	-0,18021±12	0,93873 ±103	1738
924	0,20033±11	-0,27947±11	0,93808 ±107	1736,6
925	0,20566±16	$-0,2\overline{22\pm 16}$	0,95314 ±164	1738,1
926	0,21863±12	$-0,22081\pm11$	0,94987 ±114	1737,1
927	$0,22507 \pm 10$	-0,21231±11	0,95056 ±136	1737,5
928	0,23331±14	$-0,24083\pm14$	0,94222 ±155	1738,3

0.00	0.00 (10.15	0.05414.45	0.0000 (151	1500.0
929	0,23618±17	-0,2/414±17	0,93296 ±171	1739,3
930	0,25545±15	$-0,20912\pm15$	0,94337 ±150	1737,2
931	0,26352±14	-0,27794±10	$0,92427 \pm 128$	1738,9
932	0,2791±16	-0,25414±9	$0,92613 \pm 146$	1738,3
933	0,29075±7	-0,2944/±8	0,91052 ±84	1738,4
934	0,2977±9	-0,30054±11	0,90625 ±156	1738,3
935	0,20928±18	-0,35102±18	0,91223 ±187	1737,4
936	0,21061±23	$-0,32538\pm24$	0,92189 ±240	1738,2
937	0,22513±22	$-0,3332\pm10$	0,91578 ±131	1738,4
938	0,23877±10	-0,30717±31	0,92173 ±136	1738,9
939	0,25028±14	-0,39031±15	0,88572 ±149	1737,6
940	0,2526±15	$-0,31849\pm14$	0,91498 ±146	1740,2
941	0,26776±12	-0,36045±15	0,89513 ±145	1740,6
942	$0,26903\pm10$	-0,32464±15	0,90702 ±169	1738,5
943	0,21126±19	-0,41138±19	0,8854 ±190	1736,2
944	0,21809±17	-0,4167±13	0,88268 ±164	1738,4
945	0,2299±14	-0,46826±16	0,85317 ±187	1738,1
946	0,26973±24	-0,41218±11	0,87054 ±220	1738,5
947	0,22322±13	-0,54352±13	0,80916 ±148	1738,1
948	$0,2528\pm8$	-0,59777±9	0,76006 ±92	1737,2
949	0,27086±16	$-0,53279\pm17$	0,8015 ±214	1737,8
950	0,28212±17	$-0,58905\pm18$	0,75632 ±208	1736,9
951	0,29437±13	$-0,54451\pm16$	0,78598 ±160	1738,9
952	0,22737±14	$-0,6859 \pm 14$	0,69019 ±143	1736,8
953	0,22853±18	$-0,69191\pm19$	0,68206 ±188	1734,8
954	0,24574±17	$-0,67406\pm17$	0,69437 ±173	1735,4
955	0,24603±13	$-0,68381\pm20$	0,68565 ±158	1736,6
956	0,27321±12	$-0,61978 \pm 12$	0,73425 ±133	1736,3
957	0,29523±14	$-0,6751\pm15$	0,67542 ±131	1737,3
958	0,22684±13	-0,7213±14	0,65413 ±126	1737,8
959	0,25012±16	$-0,78966 \pm 16$	0,55866 ±202	1736,6
960	$0,25487 \pm 14$	$-0,74414\pm14$	0,61481 ±145	1735,2
961	0,26887±12	-0,73737±12	0,61857 ±127	1736,9
962	0,28758±15	-0,73974±15	0,60724 ±177	1736,9
963	0,2586±19	$-0,87221\pm20$	0,41437 ±200	1737,5
964	0,26241±35	$-0,82901\pm26$	0,49103 ±244	1735,7
965	0,26547±17	$-0,85697 \pm 12$	0,44048 ±116	1737,1
966	0,26712±19	$-0,87862\pm20$	0,39726 ±189	1739,1
967	0,27827±34	-0,80286±16	0,52739 ±241	1738,2
968	0,25539±30	-0,9193±14	0,2989 ±130	1737,8
969	0,32294±19	-0,09459±19	0,94161 ±196	1738
970	0,34213±10	-0,07079±17	0,93616 ±147	1736,8
971	0,34777±24	-0,00536±24	0,9358 ±225	1735,2
972	0,35502±15	-0,0612±10	0,93241 ±103	1737,4
973	0,30794±22	-0,10664±22	0,94464 ±222	1736,8
974	0,3988±20	-0,17747±20	0,89926 ±206	1737,4
975	0,30912±10	-0,24914±10	0,91782 ±91	1738,1
976	0,3181±17	-0,2926±17	0,90187 ±175	1738.2
977	0,3281±12	-0,23693±13	0,91553 ±115	1739,8
978	0,35097±22	-0,21748±21	0,91079 ±204	1738,1

070	0.38056+17	0.22788+18	0.80404 ± 203	1728 7
980	$0,38030\pm17$ 0.33447+17	-0.23788 ± 18 -0.3380/1+16	$0,89404 \pm 203$	1738.2
981	0.34782+12	$-0,3804\pm10$	0.85639 ± 116	1738,2
982	0.34819 ± 12	-0.36311 ± 12	$0,86455 \pm 125$	1738.6
983	0.31054+13	$-0,30311\pm12$ -0.4813+16	$0,00+35 \pm 125$ 0.8202 +137	1738,8
984	0.33032+19	-0.40319 ± 18	$0,85298 \pm 170$	1730,0
985	0.3607 ± 17	-0.48247+18	$0,03200 \pm 170$ 0.79845 +180	1738 5
986	0 37194+69	-0.47812+25	0.79678 +218	1730,3
987	0.37687+18	-0.41334+17	0.82906 +187	1738.3
988	0 38838+23	-0.43147+22	0.81361 +212	1730,3
989	0 30419+19	-0 51214+13	0.8032 +209	1738.1
990	0 31196+18	-0.53032+18	0.78905 +186	1730,1
991	0 32073+24	-0.5694+25	0,75635 +217	1737.4
992	0.34669+11	-0 57838+8	0,73803 +84	1737.6
993	0 3794+12	-0.52454+12	0.7621 +102	1738
994	0.3829+22	-0.54793+22	0.74216 +227	1736
995	0.38674+18	-0.56297+13	0.73003 +181	1737.6
996	0.39436+21	-0.58566+20	0.7087 +195	1738.8
997	0.3121+14	-0.61002+19	0.7281 +195	1737.8
998	0.32193±16	-0.66652 ± 17	0.67163 ± 163	1737.2
999	0.33975±20	-0.642 ± 20	0.68776 ±207	1738.6
1000	0.37904±16	-0.52483 ± 16	0.76182 ± 161	1737.7
1001	0.29846±16	-0.72404 ± 13	0.6201 ±164	1736.2
1002	0.3126±22	-0.78809 ± 22	0.52966 ±224	1737.5
1003	0,3138±25	-0,70475±24	0.63443 ±232	1736,1
1004	0,31768±26	-0,73226±25	0,60216 ±246	1737,9
1005	0,32717±17	-0,7682±17	0,54776 ±176	1735,7
1006	0,34649±15	-0,77911±15	0,5204 ±133	1736,3
1007	0,36968±12	-0,75116±17	0,54435 ±194	1735,7
1008	0,37281±16	-0,77889±16	0,50183 ±167	1735,9
1009	0,37632±14	-0,73012±14	0,57049 ±168	1738,2
1010	0,37607±10	-0,7066±10	0,59826 ±103	1736,9
1011	0,38754±14	-0,71303±14	0,58087 ±149	1734,6
1012	0,3591±23	-0,81764±22	0,44922 ±238	1737,5
1013	$0,40864{\pm}14$	$-0,00977 \pm 14$	0,91059 ±120	1734,8
1014	0,43635±13	-0,0469±13	0,89732 ±117	1736,2
1015	0,45133±15	-0,03152±13	0,89055 ±150	1736,2
1016	0,47049±16	-0,06999±18	0,87863 ±159	1736,6
1017	$0,48574{\pm}18$	-0,04543±17	0,87103 ±188	1735,2
1018	0,48803±16	-0,07429±19	0,86851 ±217	1736,4
1019	0,49092±18	-0,08965±19	0,86562 ±177	1736,7
1020	$0,4726\pm15$	-0,18064±16	0,86144 ±158	1736,4
1021	$0,41073\pm14$	-0,2736±14	0,86797 ±141	1735,4
1022	0,42083±11	-0,29316±12	0,85759 ±109	1736,8
1023	0,41907±14	-0,34047±19	0,84135 ±151	1737,6
1024	0,41739±8	-0,45212±9	0,78823 ±78	1738
1025	0,42717±22	-0,34795±22	0,83498 ±226	1738,7
1026	0,44583±19	-0,43352±19	0,78302 ±195	1737,9
1027	0,47501±18	-0,45235±18	0,75472 ±166	1738
1028	$0,49855\pm8$	$-0,44048\pm14$	0,74646 ±126	1737,9

1000	0.40054.44	0.50(51.10)	0 5 40 6 4 4 5 0	1500.0
1029	0,40354±16	-0,52671±18	$0,74824 \pm 178$	1738,2
1030	0,40746±11	-0,59851±12	0,68855 ±111	1736,7
1031	0,43473±21	-0,58477±21	0,68531 ±217	1738,6
1032	0,44056±17	-0,53442±15	0,72083 ±192	1737,5
1033	0,43138±16	-0,66722±16	0,60491 ±165	1735,7
1034	0,46457±13	$-0,60625\pm13$	0,64583 ±133	1738,5
1035	0,46412±9	$-0,60433\pm14$	0,64675 ±138	1737,2
1036	0,40349±21	-0,7366±15	0,54208 ±142	1737,4
1037	0,46543±25	-0,71998±25	0,51161 ±234	1735,3
1038	0,46479±9	-0,72015±17	0,51299 ±153	1736,2
1039	0,41591±10	-0,81833±20	0,39233 ±168	1735,1
1040	0,53611±14	-0,09375±13	0,83787 ±143	1736,6
1041	0,53762±14	-0,06918±17	0,83877 ±174	1735,8
1042	0,55815±14	-0,07422±13	0,82445 ±120	1735,3
1043	0,56411±29	-0,06421±17	0,82046 ±189	1734,2
1044	0,58518±14	-0,0333±14	0,80864 ±182	1735,9
1045	0,51698±15	-0,13758±15	0,84352 ±150	1736,1
1046	0,54124±12	$-0,13939\pm12$	0,82645 ±103	1734,1
1047	0,5422±14	$-0,15484\pm14$	0,82501 ±145	1736,9
1048	0,55154±12	$-0,17111\pm12$	0,8138 ±156	1734,4
1049	0,55807±7	$-0,12051\pm8$	0,81877 ±66	1734,9
1050	0,56272±16	$-0,17422\pm17$	0,80504 ±148	1733,8
1051	0,56702±17	$-0,13224\pm18$	0,81086 ±205	1735
1052	0,57982±11	$-0,16487 \pm 11$	0,79523 ±104	1734,4
1053	0,58119±13	$-0,18409 \pm 13$	0,7903 ±135	1734,8
1054	0,58271±19	$-0,10266\pm15$	0,80385 ±165	1734,9
1055	0,58868±10	$-0,11044\pm10$	0,7982 ±87	1734,5
1056	0,59795±15	$-0,1332\pm14$	0,78736 ±130	1733,9
1057	0,53365±18	$-0,2033\pm18$	0,81952 ±203	1736,1
1058	0,50431±13	$-0,31683 \pm 13$	0,80159 ±152	1735,7
1059	0,52248±17	$-0,34878\pm17$	0,77671 ±176	1736,3
1060	0,53424±18	$-0,3172\pm19$	0,78152 ±189	1735,3
1061	0,54372±21	$-0,30664\pm22$	0,77952 ±220	1735,8
1062	0,55829±12	$-0,3849\pm9$	0,73464 ±172	1737,7
1063	0,56771±19	$-0,39045\pm19$	0,72572 ±193	1739,3
1064	0,5937±15	$-0,34859 \pm 15$	0,72487 ±150	1737,6
1065	0,51792±17	$-0,45267\pm21$	0,72513 ±177	1737,2
1066	0,53421±7	$-0,43814\pm7$	0,72259 ±59	1737,7
1067	0,53993±15	-0,413±16	0,73318 ±161	1737,8
1068	0,55972±24	$-0,45243\pm25$	0,69378 ±216	1737,5
1069	0,59021±18	$-0,48315\pm18$	0,64745 ±185	1738,9
1070	0,59876±22	-0,4778±23	0,64213 ±228	1737,4
1071	0,50181±9	-0,57126±11	0,64999 ±93	1738,7
1072	0,50449±22	$-0,507\overline{39\pm22}$	0,69938 ±222	1739
1073	0,51371±15	-0,54551±15	0,66252 ±153	1738,5
1074	0,52099±18	-0,55029±19	0,65087 ±157	1736,3
1075	0,54673±9	-0,51318±9	0,66132 ±119	1737,8
1076	0,55718±23	-0,50914±24	0,65508 ±228	1737,1
1077	0,56559±13	-0,5454±14	0,61598 ±140	1735,3
1078	0,5041±21	-0,62727±10	0,59111 ±128	1735,5

1070	0.5105.0	0 (0000 00	0.51165 188	1705.4
1079	0,5105±8	-0,68883±22	$0,51165 \pm 177$	1735,4
1080	0,51976±23	-0,67625±23	0,5193 ±217	1735,6
1081	0,59286±6	-0,6919±16	0,41018 ±128	1736,8
1082	0,5104±16	$-0,68846\pm16$	0,51419 ±247	1/3/,1
1083	0,60614±18	$-0,0705\pm18$	0,79033 ±187	1735,5
1084	0,60803±20	-0,018±19	0,7927 ±182	1736,7
1085	0,62861±19	-0,07878±14	0,77168 ±152	1735,4
1086	0,68942±15	$-0,01315\pm16$	0,72174 ±137	1735
1087	0,60414±13	-0,11789±27	0,78715 ±217	1736,8
1088	0,61732±18	$-0,1933\pm16$	0,76063 ±177	1735,5
1089	0,63992±2	-0,10646±2	0,75896 ±9655	1735,4
1090	0,633±20	$-0,15681\pm20$	0,75678 ±203	1736,4
1091	0,6807±17	-0,13851±17	0,71779 ±197	1736,2
1092	$0,66579\pm23$	-0,1902±23	0,71923 ±234	1735,3
1093	0,61443±19	-0,29527±20	0,7291 ±199	1734,9
1094	0,63911±24	-0,29913±24	0,70786 ±244	1737,2
1095	0,6792±16	-0,20581±24	0,70319 ±224	1736,5
1096	0,67994±26	-0,28158±19	0,67515 ±213	1735,9
1097	0,68903±17	-0,22017±17	0,69072 ±200	1738,4
1098	0,69839±15	-0,20457±22	0,68473 ±179	1736,8
1099	0,59952±18	$-0,3329\pm17$	0,72726 ±186	1737,4
1100	0,64898±21	$-0,38014\pm20$	0,66001 ±197	1739,2
1101	0,67476±17	-0,32352±17	0,66131 ±162	1735,7
1102	0,69475±16	-0,37248±15	0,61355 ±244	1736,2
1103	0,69701±11	$-0,3779\pm15$	0,60673 ±132	1735,3
1104	0,68332±9	-0,48431±9	0,5441 ±82	1735,9
1105	0,6981±27	$-0,42456\pm20$	0,57473 ±188	1736,3
1106	0,60208±18	$-0,64011\pm17$	0,47612 ±167	1737,2
1107	0,60734±16	-0,67558±15	0,41649 ±148	1737
1108	0,61603±17	$-0,65092\pm25$	0,44045 ±213	1735,7
1109	0,6362±18	-0,57143±15	0,51636 ±243	1736,3
1110	0,66648±24	$-0,62255\pm23$	0,40748 ±220	1736,2
1111	0,66616±20	-0,52727±21	0,52545 ±183	1736,3
1112	0,6863±9	$-0,65102\pm10$	0,31995 ±120	1735,7
1113	0,60217±18	$-0,41818\pm24$	0,67976 ±208	1737,7
1114	0,61687±15	$-0,63024\pm14$	0,47058 ±143	1737,4
1115	0,6893±20	-0,68563±19	0,23008 ±207	1736,5
1116	0,66663±18	$-0,70972\pm18$	0,22272 ±188	1736,1
1117	0,71233±18	$-0,00254\pm18$	0,70095 ±188	1737
1118	0,72103±22	$-0,06282\pm21$	0,68891 ±225	1736,7
1119	0,72928±24	$-0,03546\pm24$	0,68147 ±249	1735,9
1120	0,73778±16	$-0,03324\pm18$	0,67273 ±166	1736,4
1121	0,74257±23	$-0,01592\pm22$	0,66698 ±212	1735,1
1122	0,79295±14	-0,09385±13	0,59938 ±145	1735,3
1123	0,76402±11	-0,12055±11	0,63238 ±97	1736,5
1124	0,71897±10	-0,23403±11	0,65349 ±95	1737
1125	0,7266±20	-0,21653±26	0,6502 ±222	1736
1126	0,73117±13	-0,26661±14	0,62742 ±120	1737,5
1127	0,73637±14	-0,24187±17	0,63014 ±198	1736,2
1128	0,75189±23	-0,23401±22	0,61503 ±211	1736,7

1129	0,7574±21	-0,22076±20	0,61352 ±213	1737,1
1130	0,77311±15	$-0,21658 \pm 14$	0,59558 ±140	1737,5
1131	0,77714±16	-0,26523±16	0,56859 ±152	1736
1132	0,79912±12	-0,29806±12	0,52129 ±127	1737,4
1133	0,70988±13	$-0,32428\pm18$	0,62284 ±163	1735,5
1134	0,71287±12	-0,34868±13	0,60806 ±130	1737,7
1135	0,71753±14	-0,38518±14	0,57961 ±135	1737,4
1136	0,71667±16	-0,30116±17	0,62776 ±150	1736,7
1137	0,78278±15	-0,30232±15	0,54241 ±153	1736,7
1138	0,71223±14	$-0,43354\pm14$	0,5504 ±160	1736,5
1139	0,70386±13	-0,57858±13	0,4097 ±150	1736,4
1140	0,77514±17	$-0,57328\pm20$	0,25901 ±235	1735,1
1141	0,78584±18	-0,59199±15	0,17127 ±184	1735,8
1142	0,73408±13	-0,64197±13	0,21768 ±152	1736,7
1143	0,82519±11	-0,0219±11	0,56292 ±126	1736,6
1144	0,85013±14	$-0,01438\pm9$	0,52377 ±93	1735,7
1145	0,86201±17	-0,09793±13	0,49456 ±124	1735,7
1146	0,88948±11	$-0,00176\pm11$	0,45508 ±144	1736,6
1147	$0,85645\pm15$	$-0,23426\pm17$	0,45823 ±179	1736,7
1148	0,8821±15	$-0,21762\pm15$	0,41654 ±144	1737,2
1149	$0,88227\pm22$	$-0,27286\pm23$	0,38119 ±231	1736,5
1150	0,8221±8	$-0,34852\pm8$	0,44885 ±121	1737
1151	$0,82355\pm27$	-0,30885±11	0,47494 ±155	1737,4
1152	$0,83065\pm21$	$-0,30912\pm20$	0,45922 ±194	1735
1153	$0,8375\pm14$	$-0,31721\pm12$	0,44368 ±120	1737,1
1154	0,85108±11	-0,30666±6	0,42335 ±137	1736
1155	0,85126±23	$-0,32571\pm21$	0,40903 ±238	1736,4
1156	0,83305±16	$-0,44417 \pm 18$	0,32601 ±166	1736
1157	0,90216±13	$-0,04892 \pm 15$	0,42801 ±123	1737,6
1158	0,96776±17	-0,01488±45	0,24918 ±207	1737,1
1159	0,90285±17	-0,17065±16	0,39333 ±171	1737,2
1160	0,93137±12	$-0,12304\pm8$	0,33927 ±137	1736,1
1161	0,95266±15	$-0,16088\pm14$	$0,\overline{25498} \pm 228$	1736,8
1162	0,92597±23	-0,32626±19	0,18174 ±229	1735,4

Каталог MILLS-2

№ точки	ξ В	η в единицах	ζ в единицах	радиус-вектор
в каталоге	единицах среднего радиуса 1738.1 км	среднего радиуса 1738.1 км	среднего радиуса 1738.1 км	кратера, отсчитываемый от центра масс Луны R
1	-0,94559	-0,21203	0,24807	1738,7
2	-0,94295	-0,16619	0,28724	1737,5
3	-0,71795	0,6582	0,22039	1735,7
4	-0,91342	0,27496	0,29748	1736,7
5	-0,90763	-0,29325	0,29674	1736,2

6 -0,94492 -0,0843 0,31391 1736,8 7 -0,80289 -0,52573 0,27682 1736,1 8 -0,94359 0,01082 0,22806 1735,5 9 -0,73509 -0,62535 0,25494 1735,5 10 -0.91982 0,22167 0,32281 1737,6 11 -0.5486 0,81195 0,19355 1736,1 12 -0,93472 0,08169 0,34343 1736,6 13 -0,65257 0,71798 0,24197 1738 14 -0,93503 -0,0239 0,35183 1736,9 15 -0,92247 0,14245 0,35866 1738 16 -0,69573 -0,6621 0,2738 1736,3 19 -0,91171 -0,18499 0,3543 1736,3 21 -0,67826 0,67947 0,27439 1735,5 22 -0,83247 -0,43846 0,33608 1736,6 25 -0,70524 0,67837 0,30426					
7 -0,80289 -0,52573 0,27682 1736,1 8 -0,94359 0,01082 0,32806 1736,5 9 -0,73509 -0,62555 0,2494 1735 10 -0,91982 0,22167 0,32281 1737,6 11 -0,5486 0,81195 0,13434 1735,6 13 -0,65257 0,71798 0,24197 1738 14 -0,93503 -0,02339 0,35183 1736,6 15 -0,92247 0,14245 0,35866 1738 16 -0,69573 -0,6621 0,2738 1736,3 17 -0,5335 0,81716 0,21319 1736,2 21 -0,88264 -0,30583 0,354 1736,3 20 -0,90196 0,2276 0,3403 1735,5 21 -0,67826 0,67947 0,27439 1735,5 22 -0,83247 -0,43846 0,33608 1736,6 24 -0,90553 0,16024 0,39068	6	-0,94492	-0,0843	0,31391	1736,8
8 -0.94359 0.01082 0.32806 1735.5 9 -0.73509 -0.62535 0.25494 1737.5 10 -0.91982 0.22167 0.32281 1737.6 11 -0.5486 0.81195 0.19355 1736.1 12 -0.93472 0.08169 0.34343 1736.6 13 -0.65257 0.71798 0.24197 1738 14 -0.93503 -0.02339 0.35183 1736.9 15 -0.92247 0.14245 0.35866 1738 16 -0.69573 -0.6621 0.2738 1735.3 17 -0.5335 0.81716 0.21319 1736.2 20 -0.91171 -0.18499 0.36599 1737.6 20 -0.92347 -0.3446 0.33008 1736.5 21 -0.67826 0.67947 0.27439 1735.5 22 -0.83247 -0.43846 0.33008 1736.6 23 -0.089857 0.21937 0.37455 <td>7</td> <td>-0,80289</td> <td>-0,52573</td> <td>0,27682</td> <td>1736,1</td>	7	-0,80289	-0,52573	0,27682	1736,1
9 -0.73509 -0.62535 0.25494 17355 10 -0.91982 0.22167 0.32281 1737,6 11 -0.93472 0.08169 0.34343 1736,6 13 -0.65257 0.71798 0.24197 1738 14 -0.93503 -0.02339 0.35183 1736,9 15 -0.92247 0.14245 0.35866 1738 16 -0.66573 -0.6621 0.2738 1735,2 17 -0.5335 0.81716 0.21319 1735,2 18 -0.88264 -0.30583 0.354 1736,3 19 -0.91171 -0.18499 0.36599 1737,6 20 -0.90196 0.2276 0.36403 1736,5 21 -0.67826 0.67947 0.27439 1735,5 22 -0.83247 -0.43846 0.33608 1736,5 23 -0.90553 0.16024 0.39068 1736,5 24 -0.90552 0.79403 0.24101	8	-0,94359	0,01082	0,32806	1736,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	-0,73509	-0,62535	0,25494	1735
11 -0.5486 0.81195 0.19355 1736.1 12 -0.93472 0.08169 0.34343 1736.6 13 -0.65257 0.71798 0.24197 1738 14 -0.93503 -0.02339 0.35183 1736.9 15 -0.92247 0.14245 0.35866 1738 16 -0.69573 -0.6621 0.2738 1735.8 17 -0.5335 0.81716 0.21319 1736.2 18 -0.88264 -0.30583 0.354 1736.3 19 -0.91171 -0.18499 0.36599 1737.6 20 -0.90196 0.2276 0.36403 1736.2 21 -0.67826 0.67947 0.27439 1735.5 22 -0.83247 -0.48846 0.33008 1736.5 23 -0.98957 0.21937 0.37845 1737 24 -0.90553 0.16024 0.390068 1735.6 25 -0.70524 0.67857 0.31725 1736.7 26 -0.55255 0.79403 0.24101 1735.4 27 -0.72706 -0.60755 0.31725 1736.7 28 -0.83373 0.41079 0.36624 1735.6 30 -0.80976 -0.4633 0.35802 1738.4 31 -0.89948 0.14107 0.411 1736.3 32 -0.81612 0.4533 0.35802 1735.6 33 -0.90506 -0.01611 0.42265 1736.6 34 $-$	10	-0,91982	0,22167	0,32281	1737,6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	-0,5486	0,81195	0,19355	1736,1
13 -0.65257 0.71798 0.24197 1738 14 -0.93503 -0.02339 0.35183 1736.9 15 -0.92247 0.14245 0.35866 1738 16 -0.69573 -0.6621 0.2738 1735.8 17 -0.5335 0.81716 0.21319 1736.3 19 -0.91171 -0.18499 0.36599 1737.6 20 -0.90196 0.2276 0.36403 1736.2 21 -0.67826 0.67947 0.27439 1735.5 22 -0.83247 -0.43846 0.33608 1736.6 23 -0.89857 0.21937 0.37845 1737 24 -0.90553 0.16024 0.39068 1736.6 25 -0.70524 0.63373 0.30426 1735.9 26 -0.55525 0.79403 0.24101 1735.4 27 -0.72706 -0.4653 0.35802 1736.3 29 -0.81848 0.44107 0.411	12	-0,93472	0,08169	0,34343	1736,6
14 -0.93503 -0.02339 0.35183 1736.9 15 -0.92247 0.14245 0.35866 1738 16 -0.69573 -0.6621 0.2738 1735.8 17 -0.5335 0.81716 0.21319 1736.2 18 -0.88264 -0.30583 0.354 1736.3 19 -0.91171 -0.18499 0.36599 1737.6 20 -0.90196 0.2276 0.36403 1736.2 21 -0.67826 0.67947 0.27439 1735.5 22 -0.83247 -0.43846 0.33608 1736.6 23 -0.89857 0.21937 0.37845 1737. 24 -0.90553 0.16024 0.39068 1736.6 25 -0.70524 0.63837 0.30426 1735.9 26 -0.55525 0.79403 0.24101 1735.3 29 -0.81848 0.44385 0.36176 1736.3 29 -0.81848 0.44332 0.37664 <td>13</td> <td>-0,65257</td> <td>0,71798</td> <td>0,24197</td> <td>1738</td>	13	-0,65257	0,71798	0,24197	1738
15 -0,92247 0,14245 0,35866 1738 16 -0,69573 -0,6621 0,2738 1735,8 17 -0,5335 0,81716 0,21319 1736,2 18 -0,88264 -0,30583 0,354 1736,2 19 -0,91171 -0,18499 0,36599 1737,6 20 -0,90196 0,2276 0,36403 1736,2 21 -0,67826 0,67947 0,27439 1735,5 22 -0,83247 -0,43846 0,33608 1736,6 25 -0,70524 0,63837 0,30426 1735,9 26 -0,55525 0,79403 0,24101 1735,4 27 -0,72706 -0,60755 0,31725 1736,7 28 -0,81373 0,4107 0,411 1736,2 30 -0,80976 -0,4653 0,35802 1738,4 31 -0,89948 0,14107 0,411 1736,3 32 -0,81848 0,44385 0,36624	14	-0,93503	-0,02339	0,35183	1736,9
16 -0.69573 -0.6621 0.2738 1735.8 17 -0.5335 0.81716 0.21319 1736.2 18 -0.88264 -0.30583 0.3554 1736.3 19 -0.91171 -0.18499 0.36599 1737.6 20 -0.09196 0.2276 0.36403 1736.5 21 -0.67826 0.67947 0.27439 1735.5 22 -0.83247 -0.43846 0.33608 1736.5 23 -0.89857 0.21937 0.37845 1737. 24 -0.90553 0.16024 0.39068 1736.6 25 -0.70524 0.63837 0.30426 1735.9 26 -0.55525 0.79403 0.24101 1735.4 27 -0.70706 -0.60755 0.31725 1736.7 28 -0.83373 0.4107 0.411 1736.3 30 -0.80976 -0.4653 0.35802 1735.5 33 -0.90506 -0.01611 0.42265 </td <td>15</td> <td>-0,92247</td> <td>0,14245</td> <td>0,35866</td> <td>1738</td>	15	-0,92247	0,14245	0,35866	1738
17 -0.5335 0.81716 0.21319 1736.2 18 -0.88264 -0.30583 0.354 1736.3 19 -0.91171 -0.18499 0.36599 1737.6 20 -0.90196 0.2276 0.36403 1736.2 21 -0.67826 0.67947 0.27439 1735.5 22 -0.83247 -0.43846 0.33608 1736.5 23 -0.89857 0.21937 0.37845 1737 24 -0.90553 0.16024 0.39068 1736.6 25 -0.70524 0.63837 0.30426 1735.9 26 -0.55525 0.79403 0.24101 1735.4 27 -0.72706 -0.60755 0.31725 1736.7 28 -0.83373 0.41079 0.36624 1736.2 30 -0.80976 -0.4653 0.35802 1738.4 31 -0.89948 0.14107 0.411 1736.3 32 -0.81612 0.43129 0.38065 1735.5 33 -0.90506 -0.01611 0.42265 1736.4 34 -0.86322 0.29621 0.40531 1735.6 35 0.37096 0.6517 0.65854 1734.6 36 -0.85582 0.31671 0.40531 1735.6 37 -0.89423 -0.13804 0.42512 1737.6 38 -0.8714 0.15277 0.43359 1738.3 41 -0.76859 0.94577 0.4043 1738.3 42	16	-0,69573	-0,6621	0,2738	1735,8
18 -0,88264 -0,30583 0,354 1736,3 19 -0,91171 -0,18499 0,36599 1737,6 20 -0,90196 0,2276 0,36403 1736,5 21 -0,67826 0,67947 0,27439 1735,5 22 -0,83247 -0,43846 0,33608 1736,5 23 -0,89857 0,21937 0,37845 1737 24 -0,90553 0,16024 0,39068 1736,6 25 -0,70524 0,63837 0,30426 1735,9 26 -0.55525 0,79403 0,24101 1735,4 27 -0,72706 -0,60755 0,31725 1736,7 28 -0,83373 0,41079 0,36624 1736,3 29 -0,81848 0,44385 0,36176 1736,3 31 -0,80976 -0,4653 0,35802 1738,4 31 -0,80948 0,14107 0,411 1736,3 32 -0,81612 0,43129 0,38065 </td <td>17</td> <td>-0,5335</td> <td>0,81716</td> <td>0,21319</td> <td>1736,2</td>	17	-0,5335	0,81716	0,21319	1736,2
19 $-0,91171$ $-0,18499$ $0,36599$ $1737,6$ 20 $-0,90196$ $0,2276$ $0,36403$ $1736,2$ 21 $-0,67826$ $0,67947$ $0,27439$ $1735,5$ 22 $-0,83247$ $-0,43846$ $0,33608$ $1736,5$ 23 $-0,89857$ $0,21937$ $0,37845$ 11737 24 $-0,90553$ $0,16024$ $0,39068$ $1736,6$ 25 $-0,70524$ $0,63837$ 0.30426 $1735,9$ 26 -0.55525 $0,79403$ $0,24101$ $1735,4$ 27 $-0,72706$ $-0,60755$ $0,31725$ $1736,7$ 28 -0.83373 $0,41079$ $0,36624$ $1736,3$ 29 -0.81848 $0,44385$ $0,36176$ $1736,2$ 30 $-0,80976$ -0.4653 $0,35802$ $1738,4$ 31 -0.89948 $0,14107$ $0,411$ $1736,3$ 32 $-0,81612$ $0,43129$ $0,38065$ $1735,5$ 33 -0.90506 $-0,01611$ $0,42265$ $1736,4$ 34 -0.86322 $0,29621$ $0,40531$ $1735,6$ 35 $0,37096$ $0,6517$ $0,65854$ $1734,6$ 36 -0.85582 $0,31671$ $0,40569$ $1735,8$ 37 -0.89423 $-0,13804$ $0,42512$ $1737,6$ 38 -0.89907 $0,03636$ $0,43432$ $1736,6$ 39 $-0,76441$ $0,51855$ $0,37924$ $1735,8$ 40 $-0,87814$ $0,15277$ $0,45359$ $1738,3$ 41 <td>18</td> <td>-0,88264</td> <td>-0,30583</td> <td>0,354</td> <td>1736,3</td>	18	-0,88264	-0,30583	0,354	1736,3
20 -0.90196 0.2276 0.36403 $1736,2$ 21 -0.67826 0.67947 0.27439 $1735,5$ 22 -0.83247 -0.43846 0.33608 $1736,5$ 23 -0.89857 0.21937 0.37845 1737 24 -0.90553 0.16024 0.39068 $1736,6$ 25 -0.70524 0.63837 0.30426 $1735,9$ 26 -0.55525 0.79403 0.24101 $1735,4$ 27 -0.72706 -0.60755 0.31725 $1736,7$ 28 -0.83373 0.41079 0.36624 $1736,3$ 29 -0.81848 0.44385 0.36176 $1736,2$ 30 -0.80976 -0.4653 0.35802 $1738,4$ 31 -0.89948 0.14107 0.411 $1736,3$ 32 -0.81612 0.43129 0.38065 $1735,5$ 33 -0.90506 -0.01611 0.42265 $1736,4$ 34 -0.85282 0.31671 0.65854 $1734,6$ 35 0.37096 0.6517 0.65854 $1735,6$ 37 -0.89423 -0.13804 0.42512 $1737,6$ 38 -0.89907 0.03636 0.43432 $1736,6$ 39 -0.76421 0.51885 0.37924 $1735,8$ 40 -0.78748 0.45602 0.44533 $1736,6$ 39 -0.76421 0.51897 0.40433 $1735,6$ 44 -0.78748 0.45602 0.44533 $1735,6$ 45<	19	-0,91171	-0,18499	0,36599	1737,6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	-0,90196	0,2276	0,36403	1736,2
22 -0.83247 -0.43846 0.33608 $1736,5$ 23 -0.89857 0.21937 0.37845 1737 24 -0.90553 0.16024 0.39068 $1736,6$ 25 -0.70524 0.63837 0.30426 $1735,9$ 26 -0.55525 0.79403 0.24101 $1735,4$ 27 -0.72706 -0.60755 0.31725 $1736,7$ 28 -0.83373 0.41079 0.36624 $1736,3$ 29 -0.81848 0.44385 0.36176 $1736,2$ 30 -0.80976 -0.4653 0.35802 $1738,4$ 31 -0.89948 0.14107 0.4111 $1736,3$ 32 -0.81612 0.43129 0.38065 $1735,5$ 33 -0.90506 -0.01611 0.42265 $1736,4$ 34 -0.86322 0.29621 0.40531 $1735,6$ 35 0.37096 0.6517 0.65854 $1734,6$ 36 -0.85582 0.31671 0.40569 $1735,8$ 37 -0.89423 -0.13804 0.42512 $1735,8$ 40 -0.87814 0.15277 0.44332 $1736,6$ 39 -0.76441 0.51885 0.37924 $1735,8$ 41 -0.78748 0.44507 $1736,3$ 44 -0.78748 0.44507 $1736,3$ 44 -0.78748 0.44507 $1736,3$ 45 -0.86769 0.44577 0.44543 $1736,6$ 47 -0	21	-0,67826	0,67947	0,27439	1735,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	-0,83247	-0,43846	0,33608	1736,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	23	-0,89857	0,21937	0,37845	1737
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24	-0,90553	0,16024	0,39068	1736,6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25	-0,70524	0,63837	0,30426	1735,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	-0,55525	0,79403	0,24101	1735,4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27	-0,72706	-0,60755	0,31725	1736,7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	28	-0,83373	0,41079	0,36624	1736,3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29	-0,81848	0,44385	0,36176	1736,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30	-0,80976	-0,4653	0,35802	1738,4
32 -0.81612 0.43129 0.38065 $1735,5$ 33 -0.90506 -0.01611 0.42265 $1736,4$ 34 -0.86322 0.29621 0.40531 $1735,6$ 35 0.37096 0.6517 0.65854 $1734,6$ 36 -0.85582 0.31671 0.40569 $1735,8$ 37 -0.89423 -0.13804 0.42512 $1737,6$ 38 -0.89907 0.03636 0.43432 $1736,6$ 39 -0.76441 0.51885 0.37924 $1735,8$ 40 -0.87814 0.15277 0.45359 $1738,3$ 41 -0.76859 0.49577 0.4043 $1738,1$ 42 -0.81379 0.38997 0.42733 $1735,4$ 43 -0.88133 -0.06981 0.46507 $1736,3$ 44 -0.78748 0.45602 0.41546 $1738,7$ 45 -0.85623 0.24057 0.45453 $1736,6$ 47 -0.85773 0.19208 0.47467 $1736,3$ 48 $-0,604$ 0.72091 0.34017 $1738,3$ 49 -0.86769 0.07409 0.48903 $1735,9$ 50 -0.82983 0.29394 0.47261 $1736,7$ 51 -0.59603 0.72548 0.34007 $1735,7$ 52 -0.76526 0.46579 0.4414 $1735,9$ 53 -0.5727 -0.74405 0.3429 $1737,4$ 54 -0.76439 0.44791 0.46068	31	-0,89948	0,14107	0,411	1736,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	-0,81612	0,43129	0,38065	1735,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	33	-0,90506	-0,01611	0,42265	1736,4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	34	-0,86322	0,29621	0,40531	1735,6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	35	0,37096	0,6517	0,65854	1734,6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	-0,85582	0,31671	0,40569	1735,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37	-0,89423	-0,13804	0,42512	1737,6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38	-0,89907	0,03636	0,43432	1736,6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	-0,76441	0,51885	0,37924	1735,8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	-0,87814	0,15277	0,45359	1738,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	41	-0,76859	0,49577	0,4043	1738,1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	42	-0,81379	0,38997	0,42733	1735,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43	-0,88133	-0,06981	0,46507	1736,3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	44	-0,78748	0,45602	0,41546	1738,7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	45	-0,85623	0,24057	0,45453	1736
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46	-0,84288	0,27805	0,45883	1736,6
48-0,6040,720910,340171738,349-0,867690,074090,489031735,950-0,829830,293940,472611736,751-0,596030,725480,340071735,752-0,765260,465790,44141735,953-0,5727-0,744050,34291737,454-0,764390,447910,460681735,655-0,77125-0,433960,46781739,8	47	-0,85773	0,19208	0,47467	1736,3
49-0,867690,074090,489031735,950-0,829830,293940,472611736,751-0,596030,725480,340071735,752-0,765260,465790,44141735,953-0,5727-0,744050,34291737,454-0,764390,447910,460681735,655-0,77125-0,433960,46781739,8	48	-0,604	0,72091	0,34017	1738,3
50-0,829830,293940,472611736,751-0,596030,725480,340071735,752-0,765260,465790,44141735,953-0,5727-0,744050,34291737,454-0,764390,447910,460681735,655-0,77125-0,433960,46781739,8	49	-0,86769	0,07409	0,48903	1735,9
51-0,596030,725480,340071735,752-0,765260,465790,44141735,953-0,5727-0,744050,34291737,454-0,764390,447910,460681735,655-0,77125-0,433960,46781739,8	50	-0,82983	0,29394	0,47261	1736,7
52-0,765260,465790,44141735,953-0,5727-0,744050,34291737,454-0,764390,447910,460681735,655-0,77125-0,433960,46781739,8	51	-0,59603	0,72548	0,34007	1735,7
53-0,5727-0,744050,34291737,454-0,764390,447910,460681735,655-0,77125-0,433960,46781739,8	52	-0,76526	0,46579	0,4414	1735,9
54-0,764390,447910,460681735,655-0,77125-0,433960,46781739,8	53	-0,5727	-0,74405	0,3429	1737.4
55 -0,77125 -0,43396 0,4678 1739,8	54	-0,76439	0,44791	0,46068	1735.6
	55	-0,77125	-0,43396	0,4678	1739,8

· · · · · · · · · · · · · · · · · · ·				
56	-0,50583	0,80448	0,30881	1736,7
57	-0,81359	-0,29565	0,49838	1736,1
58	-0,80677	-0,31694	0,49862	1738,1
59	-0,84948	0,00734	0,52556	1736,3
60	-0,84553	-0,05558	0,5288	1736
61	-0,76897	0,41709	0,48229	1736,3
62	-0,80435	-0,30997	0,50572	1737,1
63	-0,83965	0,09369	0,53281	1736,1
64	-0,84186	0,04586	0,53584	1736,3
65	-0,82859	-0,17935	0,5282	1736,1
66	0,5182	0,51899	-0,67905	1737,2
67	-0,81986	-0,22797	0,52401	1737
68	-0,65624	0,62369	0,42079	1735,2
69	-0,84461	-0,00556	0,53362	1736,5
70	-0,79284	0,32828	0,51124	1736,1
71	-0,76457	-0,41424	0,49296	1737,4
72	-0,81462	0,22962	0,53109	1736,7
73	-0,71747	0,50977	0,47268	1736,4
74	-0,54502	0,75376	0,36358	1735,8
75	-0,79654	0,28432	0,53151	1736,2
76	-0,70522	-0,52753	0,47196	1736,7
77	-0,82404	-0,08884	0,55733	1736
78	-0,82016	-0,04341	0,56841	1736
79	-0,79698	-0,2583	0,54495	1737,1
80	-0,61168	0,66821	0,4189	1734,7
81	-0,79007	-0,27745	0,54549	1737
82	-0,56237	0,72781	0,38994	1736,4
83	-0,7596	0,37316	0,53041	1736
84	-0,59818	-0,67412	0,42971	1735,4
85	-0,43818	0,84008	0,31672	1736,4
86	-0,77207	0,29681	0,56001	1736,2
87	-0,69335	0,51292	0,50429	1736,5
88	-0,47503	0,80578	0,3494	1735,5
89	-0,74769	-0,36952	0,55101	1737,4
90	-0,76806	-0,29531	0,56673	1736,6
91	-0,66577	-0,55776	0,49499	1737,5
92	-0,61504	0,63925	0,4586	1735,7
93	-0,78159	0,21987	0,5835	1737,8
94	-0,79643	-0,06505	0,5994	1736,2
95	-0,56933	-0,69993	0,42838	1736
96	-0,70746	-0,45409	0,54014	1736,8
97	-0,78641	-0,09724	0,60835	1736,3
98	-0,66425	-0,54287	0,51418	1738,4
99	-0,78776	0,00361	0,61388	1735,9
100	-0,73299	-0,3574	0,57763	1736,9
101	-0,48625	0,78178	0,38716	1735,9
102	-0,74234	0,30663	0,59489	1737,2
103	-0,58674	0,65379	0,47377	1734,8
104	-0,53754	0,71886	0,43606	1734,5
105	-0,77365	0,0397	0,631	1736,6

106	-0,50124	-0,76214	0,40935	1737,8
107	-0,76726	0,10615	0,63096	1736,4
108	-0,64742	-0,54535	0,53208	1737,8
109	0,57795	0,42561	0,69494	1736,5
110	-0,66722	0,48864	0,56066	1736,6
111	0,15955	0,42795	0,88859	1736,5
112	-0,75209	0,16335	0,63703	1736,5
113	0,61471	0,58702	-0,52488	1736,3
114	-0,54624	0,69349	0,46686	1735,7
115	-0,58156	-0,64248	0,49797	1737,2
116	-0,75526	-0,0874	0,64841	1736,8
117	-0,68318	-0,43254	0,58757	1737,3
118	-0,36626	0,87395	0,31728	1736,9
119	-0,63059	0,54715	0,5505	1738,2
120	-0,73298	-0,22355	0,64057	1736
121	-0,67288	-0,44715	0,58921	1738
122	-0,4433	0,80316	0,39702	1737,4
123	-0,66143	-0,45121	0,5978	1736,7
124	-0,72816	0,16596	0,66387	1736,8
125	-0,71387	-0,25024	0,6537	1737,7
126	-0,71752	0,18142	0,67136	1736,8
127	-0,52382	-0,69411	0,49116	1735,9
128	-0,56245	-0,63568	0,52777	1737,2
129	-0,70803	0,20269	0,67514	1736,5
130	-0,68205	0,32987	0,65086	1736
131	-0,69745	0,26093	0,66576	1736,1
132	-0,61986	-0,51205	0,59471	1738,2
133	-0,47857	-0,74758	0,45919	1737
134	-0,71825	-0,06425	0,69118	1736,1
135	-0,50598	-0,70984	0,48871	1737
136	-0,71301	-0,11951	0,68947	1736,4
137	-0,55474	0,63048	0,53989	1735,2
138	-0,71484	0,00388	0,69812	1736,7
139	-0,40295	0,82396	0,39415	1735,2
140	-0,70056	0,1828	0,68885	1737
141	-0,69457	0,21044	0,68657	1736,4
142	-0,51865	-0,677	0,52071	1736,8
143	-0,55179	-0,6148	0,56317	1737,8
144	-0,59233	0,52582	0,60834	1735,9
145	-0,67584	-0,24704	0,69386	1737,4
146	-0,65534	0,33465	0,67629	1737,1
147	-0,38547	0,83046	0,39871	1735,7
148	-0,6893	-0,05401	0,72109	1736,4
149	-0,5493	-0,60372	0,57655	1736,9
150	-0,66671	0,2518	0,70085	1737,3
151	-0,55899	0,58156	0,58935	1736,4
152	-0,46968	-0,73059	0,49434	1737
153	-0,66839	-0,1799	0,72022	1736,2
154	-0,63221	0,35687	0,68663	1736,8
155	-0,67953	0,18746	0,73872	1774,7

156	-0,67036	0,1245	0,73073	1737,1
157	-0,66949	0,03511	0,7416	1737,6
158	-0,62372	-0,34785	0,69809	1735,8
159	-0,53901	0,58488	0,60464	1736,5
160	-0,64582	-0,2299	0,72731	1737,2
161	-0,63945	-0,26189	0,72215	1737,2
162	-0,44047	-0,74413	0,49936	1735,6
163	-0,56468	0,51332	0,64423	1735,8
164	-0,49741	0,65371	0,56849	1736,3
165	-0,5516	-0,54351	0,63176	1737
166	-0,30196	0,8846	0,34986	1734,7
167	-0,59577	-0,39992	0,69505	1736,3
168	-0,57908	0,44799	0,68054	1737,4
169	-0,4982	0,6327	0,59132	1736,5
170	-0,64062	0,07724	0,76314	1737
171	-0,59584	0,36253	0,7155	1736,7
172	-0,5739	-0,44058	0,68823	1735,6
173	-0,63459	0,09115	0,76651	1736,8
174	-0,45671	-0,68989	0,56018	1736,7
175	-0,57846	-0,39401	0,7128	1736,3
176	-0,62696	-0,059	0,77686	1738,2
177	-0,45447	-0,6846	0,56915	1737,4
178	-0,3066	0,86858	0,38515	1735,3
179	-0,52157	0,5424	0,65727	1736,6
180	-0,61055	-0,18479	0,76898	1736,6
181	-0,562	0,42448	0,70896	1736,9
182	-0,37845	0,78967	0,47977	1735,5
183	-0,42122	0,73074	0,53577	1736,8
184	-0,52757	0,51239	0,6769	1737,3
185	-0,56311	-0,38536	0,72968	1736,4
186	-0,59243	-0,23793	0,76898	1737,2
187	-0,60497	-0,08143	0,79114	1736,8
188	0,70391	-0,5425	0,45629	1736,4
189	-0,59543	-0,12794	0,79203	1736,5
190	-0,59735	-0,04702	0,79956	1736,7
191	-0,54522	-0,41004	0,72937	1735,8
192	-0,58838	-0,1021	0,80086	1736,4
193	-0,56247	-0,30797	0,76594	1736,3
194	-0,49758	-0,53146	0,6857	1738,3
195	-0,54884	-0,35294	0,75639	1736,3
196	-0,58522	0,03016	0,80964	1737,2
197	-0,58302	0,08051	0,80753	1736,8
198	-0,55559	-0,3091	0,7703	1736
199	-0,58294	0,05614	0,8098	1737
200	-0,42243	-0,68857	0,58649	1735,1
201	-0,33657	-0,81668	0,46781	1737,3
202	-0,57718	0,04253	0,81489	1737,2
203	-0,57372	-0,08579	0,81322	1736,2
204	-0,55272	0,25999	0,79102	1737,1
205	-0,47189	0,55854	0,67968	1735,2

206	-0,31841	0,82744	0,45974	1735,8
207	-0,36051	-0,76678	0,52996	1737
208	-0,52171	0,36003	0,77283	1737,3
209	-0,50345	-0,42188	0,75244	1736
210	-0,55135	-0,11061	0,82541	1735,9
211	-0,44408	0,5931	0,66966	1735,9
212	-0,24331	0,89489	0,37008	1735,5
213	-0,27294	0,86613	0,41569	1735,9
214	-0,54522	0,08639	0,83267	1736,4
215	-0,52316	-0,29338	0,79891	1736,4
216	-0,52767	0,24642	0,81277	1737,9
217	-0,38259	-0,71123	0,58885	1737,2
218	-0,51749	-0,26294	0,81334	1736,8
219	-0,53516	-0,00389	0,84432	1737,5
220	-0,51312	0,27367	0,81381	1738,5
221	-0,53369	-0,01035	0,84559	1738,1
222	-0,53006	0,09926	0,84122	1736,8
223	-0,49519	0,36234	0,78968	1738,2
224	-0,469	-0,46793	0,74863	1737,5
225	-0,21022	0,91639	0,33607	1735,4
226	-0,31976	-0,79603	0,51235	1736,7
227	-0,5047	0,29174	0,81268	1738,3
228	-0,51399	-0,15062	0,84335	1736,5
229	-0,23723	0,88603	0,39419	1735,2
230	-0,46311	-0,4373	0,76971	1736,5
231	-0,00025	-0,00076	0,99882	1736
232	-0,45589	-0,45897	0,76221	1737,6
233	-0,48324	0,33576	0,80837	1737,9
234	-0,39627	0,63206	0,66397	1735,8
235	-0,43705	-0,51498	0,73673	1737,2
236	-0,4857	0,27442	0,82982	1737,9
237	-0,47042	-0,35575	0,80733	1737,8
238	-0,40776	0,57851	0,70489	1736,2
239	-0,39684	-0,60086	0,69394	1738,2
240	-0,4868	-0,18265	0,85307	1736,4
241	-0,30597	0,77968	0,54342	1735,3
242	-0,00025	-0,00076	0,99882	1736
243	0,36516	0,87724	-0,31565	1740,3
244	-0,46314	0,3168	0,82768	1738
245	-0,47722	0,16574	0,86265	1737,6
246	-0,45036	0,36434	0,81486	1/3/,/
247	-0,47552	0,17478	0,86243	1738,5
248	0,04078	0,68822	0,72202	1735,2
249	-0,36006	-0,66398	0,65471	1/3/,4
250	-0,453/8	-0,32894	0,82766	1/3/,4
251	-0,20591	0,90095	0,37763	1/35,2
252	-0,4316	0,42/32	0,79364	1/3/
253	-0,42456	0,45611	0,7817	1/3/,5
254	-0,2/684	0,80958	0,51584	1/36,5
255	0,3651	0,87049	-0,32962	1/3/,8

256	0.00025	0.00076	0.00002	1726
256	-0,00025	-0,000/6	0,99882	1/36
257	-0,34242	-0,40847	0,8124	1735,2
250	-0,1988	0,90177	0,37940	1/55,2
259	-0,00023	-0,00076	0,99882	1/30
200	-0,43074	0,10801	0,87708	1/38,9
201	0,55085	0,14322	0,02212	1/5/,9
202	-0,4108	-0,40023	0,81330	17267
203	-0,29094	-0,73110	0,38818	1/30,/
204	-0,40187	0,44719	0,79811	1/30,8
203	-0,44003	0,1031	0,00041	1737,0
200	-0,44434	-0,03308	0,89424	1730,7
207	-0,43288	-0,22971	0,87098	1736.2
200	-0,27031	-0,79131	0,54013	1730,2
209	-0,20909	-0,74731	0,59744	1737,9
270	-0,24832	0,61973	0,51279	1735,1
271	-0,32303	-0,00478	0,0714	1736,8
272	-0,42902	-0,10277	0,88709	1730,8
273	-0,33343	0.21/89	0,73493	1736,5
274	-0,41908	-0,21489	0,60113	1730,5
275	-0,20301	-0,74577	0,00+05	1736,0
270	-0,41243	0 51907	0,0000	1736,1
277	-0,33042	0.37526	0,84372	1736,5
270	-0,30157	0,57520	0,64372	1735,2
280	-0,39455	0,04787	0,87766	1737,6
281	0 54674	-0 36936	0,75026	1736.6
282	-0 31969	-0.61076	0 72437	1738
282	-0 34441	0.51555	0 78297	1735.9
283	-0.2802	0.71529	0.63784	1735,5
285	-0.37312	0.37012	0.84981	1736.7
286	-0.34969	0.47698	0.80485	1736
287	-0.19615	-0.86975	0.45179	1737.3
288	-0.26978	-0.73445	0.62234	1737.7
289	-0.18661	0.88055	0.43241	1735.6
290	-0.32067	-0.58548	0.74529	1739
291	-0.34615	0.4642	0.81414	1736.5
292	-0,3183	0.57395	0,75271	1735.8
293	-0,27015	0,71084	0,64695	1735,3
294	-0,3144	-0,57282	0,75645	1737,4
295	-0,34705	0,34923	0,86932	1736,5
296	-0,2391	-0,76297	0,59758	1735
297	-0,34327	-0,37064	0,86275	1737,7
298	-0,36023	-0,18943	0,9126	1736,8
299	-0,3504	0,29287	0,88847	1736,3
300	-0,36437	0,05833	0,92898	1737,4
301	-0,34696	0,27937	0,89437	1736,6
302	-0,21043	0,81169	0,54261	1736
303	-0,34449	-0,27785	0,8959	1736,8
304	-0,21291	-0,80334	0,55632	1738,3
305	-0,34248	0,27924	0,89626	1736,8

306 -0.28555 0.59426 0.74292 1734,7 307 -0.27474 0.62734 0.72663 1735,5 308 -0.3498 -0.060744 0.74402 1737,6 310 -0.34633 0.04401 0.93646 1737,1 311 -0.24647 0.66658 0.6716 1735,5 312 -0.27502 -0.59537 0.75374 1736,6 313 -0.34181 -0.00921 0.93881 1736,6 314 -0.21956 0.76227 0.60541 1734,4 315 -0.32601 0.2419 0.91342 1737,3 316 -0.29888 -0.44459 0.8432 1736,2 318 -0.31083 -0.31772 0.89503 1736,2 319 -0.26351 0.59378 0.75882 1735,6 321 -0.31896 -0.04585 0.94587 1736,8 322 -0.31243 -0.14585 0.94587 1737,3 324 -0.25266 -0.60817 <th></th> <th></th> <th></th> <th></th> <th></th>					
307 -0.27474 0.62734 0.72663 1735.5 308 -0.3498 -0.06537 0.93374 1736.8 309 -0.27726 -0.60744 0.74402 1737.6 310 -0.34633 0.04401 0.93646 1737.1 311 -0.27502 -0.55537 0.75374 1736.6 313 -0.34181 -0.00921 0.93881 1736.6 314 -0.21956 0.76227 0.60544 1737.3 316 -0.22801 0.2419 0.91342 1737.3 316 -0.22888 -0.44459 0.8432 1736.5 317 -0.26351 0.59378 0.75882 1736.5 320 -0.15871 0.86704 0.46921 1735.6 321 -0.31896 -0.04585 0.94587 1736.8 322 -0.31243 0.19561 0.92933 1737.7 323 -0.28843 -0.40433 0.8588 1735.9 324 -0.25266 -0.60817	306	-0,28555	0,59426	0,74929	1734,7
308 -0,3498 -0,06537 0,93374 1736.8 309 -0,27726 -0,60744 0,7402 1737.6 310 -0,34633 0,04401 0,93646 1737.1 311 -0,27502 -0,59537 0,75374 1736.6 312 -0,27502 -0,59537 0,75374 1736.6 313 -0,32601 0,02419 0,91342 1737.3 316 -0,29888 -0,44459 0,8432 1736.3 317 -0,26351 0,59378 0,75882 1736.5 320 -0,28698 0,46002 0,83915 1736.5 321 -0,31896 -0,04585 0,94587 1736.8 322 -0,31243 0,19561 0,92933 1737.7 323 -0,28434 -0,42043 0,8888 1735.9 324 -0,225266 -0,60817 0,75189 1737.3 325 -0,2933 -0,37344 0,94574 1737.3 326 -0,29706 0,20591 <td>307</td> <td>-0,27474</td> <td>0,62734</td> <td>0,72663</td> <td>1735,5</td>	307	-0,27474	0,62734	0,72663	1735,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	308	-0,3498	-0,06537	0,93374	1736,8
310 -0.34633 0.04401 0.93646 1737,1 311 -0.24647 0.69658 0.6716 1735,5 312 -0.27502 -0.59537 0.75374 1736,6 313 -0.34181 -0.00921 0.93881 1736,6 314 -0.21956 0.76227 0.60541 1734,4 315 -0.32601 0.2419 0.91342 1737,3 316 -0.28888 -0.44459 0.8432 1736,3 317 -0.26351 0.59378 0.75882 1736,5 320 -0.15871 0.86704 0.46921 1735,6 321 -0.31896 -0.44585 0.94587 1736,8 322 -0.31243 0.19561 0.92933 1737,3 324 -0.25266 -0.60817 0.75189 1737,3 325 -0.2933 -0.3784 0.87694 1736,5 326 -0.29706 0.20591 0.93242 1738,1 327 -0.31132 0.12025	309	-0,27726	-0,60744	0,74402	1737,6
311 -0.24647 0.69658 0.6716 1735.5 312 -0.27502 -0.59537 0.75374 1736.6 313 -0.34181 -0.00921 0.93881 1736.6 314 -0.21956 0.76227 0.60541 1734.4 315 -0.32601 0.2419 0.91342 1737.3 316 -0.29888 -0.44459 0.8432 1736.3 317 -0.26351 0.59378 0.75882 1736.5 320 -0.15871 0.86704 0.46921 1735.6 321 -0.31896 -0.04585 0.94587 1736.5 322 -0.31243 0.19561 0.92933 1737.7 323 -0.28443 -0.40434 0.8588 1735.9 324 -0.28266 -0.60817 0.75189 1737.3 325 -0.2933 -0.7106 0.94574 1737.3 326 -0.31508 -0.07306 0.94574 1737.4 330 -0.23401 0.61792	310	-0,34633	0,04401	0,93646	1737,1
312 -0.27502 -0.59537 0.75374 1736.6 313 -0.34181 -0.00921 0.93881 1736.6 314 -0.21956 0.76227 0.60541 1734.4 315 -0.32601 0.2419 0.91342 1737.3 316 -0.29888 -0.44459 0.8432 1736.3 317 -0.26351 0.59378 0.75882 1736.2 318 -0.31083 -0.31772 0.89503 1736.5 320 -0.15871 0.86704 0.46921 1735.6 321 -0.31243 0.19561 0.92933 1737.7 323 -0.28843 -0.4043 0.8588 1735.9 324 -0.25266 -0.60817 0.75189 1737.3 325 -0.2933 -0.37834 0.87094 1736.5 326 -0.31508 -0.07306 0.94574 1737.3 327 -0.31132 0.12025 0.94234 1737.6 330 -0.27635 -0.28321	311	-0,24647	0,69658	0,6716	1735,5
313 -0,34181 -0,00921 0,93881 1736,6 314 -0,21956 0,76227 0,60541 17374,4 315 -0,32601 0,2419 0,91342 1737,3 316 -0,29888 -0,44459 0,8432 1736,3 317 -0,26351 0,59378 0,75882 1736,5 319 -0,2698 0,46002 0,83915 1736,5 320 -0,15871 0,86704 0,46921 1735,6 321 -0,31896 -0,04585 0,94587 1736,8 322 -0,31896 -0,04585 0,94587 1737,7 323 -0,28843 -0,42043 0,8588 1735,9 324 -0,25266 -0,60817 0,75189 1737,3 325 -0,2833 -0,3734 0,87694 1736,5 326 -0,2871 0,2251 0,94234 1737,6 329 -0,2871 0,28521 0,91423 1736,7 330 -0,27635 -0,28321	312	-0,27502	-0,59537	0,75374	1736,6
314 -0.21956 0.76227 0.60541 1734,4 315 -0.32601 0.2419 0.91342 1737,3 316 -0.29888 -0.44459 0.8432 1736,3 317 -0.26351 0.59378 0.75882 1736,2 318 -0.31083 -0.31772 0.89503 1736,9 319 -0.28698 0.46002 0.83915 1736,5 320 -0.15871 0.86704 0.46921 1735,6 321 -0.31896 -0.04585 0.94587 1736,8 322 -0.31243 0.19561 0.92933 1737,7 323 -0.28843 -0.42043 0.8588 1735,9 324 -0.25266 -0.60817 0.75189 1737,3 325 -0.2933 -0.37834 0.87694 1736,5 326 -0.31508 -0.07306 0.94574 1737,3 327 -0.3132 0.12025 0.94234 1736,7 330 -0.2871 0.28351	313	-0,34181	-0,00921	0,93881	1736,6
315 -0,32601 0,2419 0,91342 1737,3 316 -0,29888 -0,44459 0,8432 1736,3 317 -0,26351 0,59378 0,75882 1736,2 318 -0,31083 -0,31772 0,89503 1736,5 320 -0,15871 0,86704 0,46921 1735,6 321 -0,31896 -0,04585 0.94587 1736,8 322 -0,31243 0,19561 0,92933 1737,7 323 -0,28843 -0,42043 0,8588 1735,9 324 -0,25266 -0,60817 0,75189 1737,3 325 -0,2933 -0,37834 0,87694 1737,3 326 -0,31132 0,12025 0,94234 1737,6 328 -0,29706 0,20591 0,93242 1738,1 329 -0,287 -0,28321 0,91423 1736,7 330 -0,24542 -0,23503 0,92849 1737 332 -0,26174 0,45779	314	-0,21956	0,76227	0,60541	1734,4
316 -0.29888 -0.44459 0.8432 1736,3 317 -0.26351 0.59378 0.75882 1736,2 318 -0.31083 -0.31772 0.89503 1736,9 319 -0.28698 0.46002 0.83915 1736,5 320 -0.15871 0.86704 0.46921 1735,6 321 -0.31896 -0.04585 0.94587 1736,8 322 -0.31896 -0.042843 0.8588 1735,9 323 -0.28843 -0.42043 0.8588 1735,9 324 -0.25266 -0.60817 0.75189 1737,3 325 -0.2933 -0.37834 0.87694 1736,5 326 -0.31508 -0.07036 0.94574 1737,3 327 -0.31132 0.12025 0.94234 1736,7 330 -0.2874 -0.28321 0.91423 1736,7 331 -0.26174 0.45779 0.84918 1737,4 332 -0.28524 -0.23503 <td>315</td> <td>-0,32601</td> <td>0,2419</td> <td>0,91342</td> <td>1737,3</td>	315	-0,32601	0,2419	0,91342	1737,3
317 -0,26351 0,59378 0,75882 1736,2 318 -0,31083 -0,31772 0,89503 1736,9 319 -0,28698 0,46002 0,83915 1736,5 320 -0,15871 0,86704 0,46921 1735,6 321 -0,31896 -0,04585 0,94587 1736,8 322 -0,31243 0,19561 0,92933 1737,7 323 -0,28843 -0,42043 0,8588 1735,9 324 -0,25266 -0,60817 0,75189 1737,3 325 -0,2933 -0,37834 0.87694 1736,5 326 -0,31132 0,12025 0,94234 1737,6 328 -0,29706 0,20591 0,93242 1738,1 329 -0,23401 0,61792 0,74857 1735,4 331 -0,26174 0,45779 0,84918 1737,4 332 -0,28524 -0,23503 0,92284 1736,9 334 -0,24651 -0,16035 <td>316</td> <td>-0,29888</td> <td>-0,44459</td> <td>0,8432</td> <td>1736,3</td>	316	-0,29888	-0,44459	0,8432	1736,3
318 -0,31083 -0,31772 0,89503 1736,9 319 -0,28698 0,46002 0,83915 1736,5 320 -0,15871 0,86704 0,46921 1735,6 321 -0,31896 -0,04585 0,94587 1736,8 322 -0,31243 0,19561 0,92933 1737,7 323 -0,28843 -0,42043 0,8588 1735,9 324 -0,25266 -0,60817 0,75189 1737,3 325 -0,2933 -0,37834 0,87694 1737,3 326 -0,31508 -0,07306 0,94574 1737,3 327 -0,31132 0,12025 0,94234 1736,6 328 -0,29706 0,20591 0,93242 1738,1 329 -0,287 -0,28321 0,91423 1736,4 331 -0,26174 0,45779 0,84918 1737,4 332 -0,28524 -0,23503 0,9228 1736,9 334 -0,27635 -0,32878	317	-0,26351	0,59378	0,75882	1736,2
319 -0.28698 0.46002 0.83915 1736,5 320 -0.15871 0.86704 0.46921 1735,6 321 -0.31896 -0.04585 0.94587 1736,8 322 -0.31243 0.19561 0.92933 1737,7 323 -0.28843 -0.42043 0.8588 1735,9 324 -0.25266 -0.60817 0.75189 1737,3 325 -0.2933 -0.37834 0.87694 1736,5 326 -0.31508 -0.07306 0.94574 1737,6 327 -0.31132 0.12025 0.94234 1736,7 328 -0.29706 0.20591 0.93242 1738,1 329 -0.287 -0.28321 0.91423 1736,7 330 -0.27635 -0.32878 0.90228 1736,9 331 -0.26174 0.45779 0.84918 1737,4 332 -0.27635 -0.32878 0.90228 1736,9 333 -0.27635 -0.32878 <td>318</td> <td>-0,31083</td> <td>-0,31772</td> <td>0,89503</td> <td>1736,9</td>	318	-0,31083	-0,31772	0,89503	1736,9
320 $-0,15871$ $0,86704$ $0,46921$ $1735,6$ 321 $-0,31896$ $-0,04585$ $0,94587$ $1736,8$ 322 $-0,31243$ $0,19561$ $0,92933$ $1737,7$ 323 $-0,22843$ $-0,42043$ $0,8588$ $1735,9$ 324 $-0,25266$ $-0,60817$ $0,75189$ $1737,3$ 325 $-0,2933$ $-0,37834$ $0,87694$ $1736,5$ 326 $-0,31508$ $-0,07306$ $0,94574$ $1737,3$ 327 $-0,31132$ $0,12025$ $0,94234$ $1737,6$ 328 $-0,29706$ $0,20591$ $0,93242$ $1738,1$ 329 $-0,287$ $-0,28321$ $0,91423$ $1736,7$ 330 $-0,2401$ $0,61792$ $0,74857$ $1735,4$ 331 $-0,26174$ $0,45779$ $0,84918$ $1737,4$ 332 $-0,28524$ $-0,23503$ $0,92849$ 1737 333 $-0,27635$ $-0,32878$ $0,90228$ $1736,9$ 334 $-0,24562$ $0,53518$ $0,80643$ $1735,6$ 335 $-0,28651$ $-0,16035$ $0,94449$ 1738 336 $-0,23074$ $0,58367$ $0,77655$ $1735,4$ 337 $-0,2294$ $-0,09649$ $0,77449$ $1737,1$ 344 $-0,22044$ $-0,04489$ $0,87599$ $1736,9$ 344 $-0,26204$ $-0,09641$ $0,95966$ $1737,1$ 344 $-0,26204$ $-0,09641$ $0,95966$ $1737,1$ 344 $-0,26204$ <t< td=""><td>319</td><td>-0,28698</td><td>0,46002</td><td>0,83915</td><td>1736,5</td></t<>	319	-0,28698	0,46002	0,83915	1736,5
321 -0,31896 -0,04585 0,94587 1736,8 322 -0,31243 0,19561 0,92933 1737,7 323 -0,28843 -0,42043 0,8588 1735,9 324 -0,25266 -0,60817 0,75189 1737,3 325 -0,2933 -0,37834 0,87694 1736,5 326 -0,31132 0,12025 0,94234 1737,6 328 -0,29706 0,20591 0,93242 1738,1 329 -0,287 -0,28321 0,91423 1736,7 330 -0,26174 0,45779 0,84918 1737,4 332 -0,28524 -0,23503 0,92849 1737 333 -0,27635 -0,32878 0,90228 1736,9 334 -0,24562 0,53518 0,80643 1735,6 335 -0,28651 -0,16035 0,94449 1738 336 -0,2774 0,58367 0,77655 1735,4 337 -0,2294 -0,59049	320	-0,15871	0,86704	0,46921	1735,6
322 -0,31243 0,19561 0,92933 1737,7 323 -0,28843 -0,42043 0,8588 1735,9 324 -0,25266 -0,60817 0,75189 1737,3 325 -0,2933 -0,37834 0,87694 1736,5 326 -0,31102 0,12025 0,94344 1737,3 327 -0,31132 0,12025 0,94234 1737,6 328 -0,29706 0,20591 0,93242 1738,1 329 -0,287 -0,28321 0,91423 1736,7 330 -0,2401 0,61792 0,74857 1735,4 331 -0,26174 0,45779 0,84918 1737,4 332 -0,28524 -0,23503 0,92849 1736,9 334 -0,24562 0,53518 0,80643 1735,6 335 -0,28074 0,58367 0,77655 1735,4 336 -0,2774 0,58367 0,77655 1735,4 337 -0,2294 -0,59049	321	-0,31896	-0,04585	0,94587	1736,8
323 -0,28843 -0,42043 0,8588 1735,9 324 -0,25266 -0,60817 0,75189 1737,3 325 -0,2933 -0,37834 0,87694 1736,5 326 -0,31508 -0,07306 0,94574 1737,3 327 -0,31132 0,12025 0,94234 1738,6 328 -0.29706 0,20591 0,93242 1738,1 329 -0,287 -0,28321 0,91423 1736,7 330 -0,2487 -0,28321 0,91423 1737,4 331 -0,26174 0,45779 0,84918 1737,4 332 -0,28524 -0,23503 0,92849 1737 333 -0,26551 -0,16035 0,94449 1738 336 -0,28501 -0,16035 0,94449 1738 336 -0,23074 0,58367 0,77655 1735,4 337 -0,2294 -0,59049 0,77449 1739,1 340 -0,2742 -0,04689	322	-0,31243	0,19561	0,92933	1737,7
324 -0.25266 -0.60817 0.75189 1737,3 325 -0.2933 -0.37834 0.87694 1736,5 326 -0.31508 -0.07306 0.94574 1737,3 327 -0.31132 0.12025 0.94234 1737,6 328 -0.29706 0.20591 0.93242 1738,1 329 -0.287 -0.28321 0.91423 1736,7 330 -0.2174 0.45779 0.84918 1737,4 332 -0.28524 -0.23503 0.92849 1737 333 -0.27635 -0.32878 0.90228 1736,9 334 -0.24562 0.53518 0.80643 1735,6 335 -0.28051 -0.16035 0.94449 1738 336 -0.23074 0.58367 0.77655 1735,4 337 -0.2294 -0.05049 0.77449 1737,1 340 -0.27474 0.08005 0.95751 1737,3 341 -0.19309 -0.7101	323	-0,28843	-0,42043	0,8588	1735,9
325 -0.2933 -0.37834 0.87694 $1736,5$ 326 -0.31508 -0.07306 0.94574 $1737,3$ 327 -0.31132 0.12025 0.94234 $1737,6$ 328 -0.29706 0.20591 0.93242 $1738,1$ 329 -0.287 -0.28321 0.91423 $1736,7$ 330 -0.23401 0.61792 0.74857 $1735,4$ 331 -0.26174 0.45779 0.84918 $1737,4$ 332 -0.28524 -0.23503 0.92849 1737 333 -0.27635 -0.32878 0.90228 $1736,9$ 334 -0.24562 0.53518 0.80643 $1735,6$ 335 -0.28651 -0.16035 0.94449 1738 336 -0.23074 0.58367 0.77655 $1735,4$ 337 -0.2294 -0.09490 0.77459 $1737,6$ 339 -0.27842 -0.04489 0.87599 1736 339 -0.27842 -0.04502 0.95881 $1737,1$ 340 -0.27474 0.08005 0.95751 1737 341 -0.16393 0.03876 0.96339 $1737,5$ 344 -0.26393 0.03876 0.96339 $1737,5$ 344 -0.26393 0.03876 0.96339 $1737,5$ 344 -0.26393 0.03876 0.96658 $1737,1$ 345 -0.16537 -0.7112 0.61406 $1737,5$ 346 -0.25717 $-0.$	324	-0,25266	-0,60817	0,75189	1737,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	325	-0,2933	-0,37834	0,87694	1736,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	326	-0,31508	-0,07306	0,94574	1737,3
328 -0.29706 0.20591 0.93242 $1738,1$ 329 -0.287 -0.28321 0.91423 $1736,7$ 330 -0.23401 0.61792 0.74857 $1735,4$ 331 -0.26174 0.45779 0.84918 $1737,4$ 332 -0.28524 -0.23503 0.92849 1737 333 -0.27635 -0.32878 0.90228 $1736,9$ 334 -0.24562 0.53518 0.80643 $1735,6$ 335 -0.28651 -0.16035 0.94449 1738 336 -0.23074 0.58367 0.77655 $1735,4$ 337 -0.2294 -0.59049 0.77449 $1739,1$ 338 -0.2575 -0.40489 0.87599 1736 339 -0.27842 -0.04502 0.95881 $1737,1$ 340 -0.27474 0.08005 0.95751 1737 341 -0.19309 -0.7101 0.67568 $1736,4$ 342 -0.15901 -0.8062 0.57662 $1737,1$ 343 -0.26204 -0.09641 0.95966 $1737,1$ 344 -0.26204 -0.09641 0.95966 $1737,1$ 344 -0.26204 -0.09641 0.9558 $1735,2$ 344 -0.2477 0.25932 0.93318 $1736,3$ 349 -0.24473 -0.25932 0.93318 $1736,3$ 349 -0.24473 -0.25932 0.93318 $1736,5$ 351 -0.16633 $0.$	327	-0,31132	0,12025	0,94234	1737,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	328	-0,29706	0,20591	0,93242	1738,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	329	-0,287	-0,28321	0,91423	1736,7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	330	-0,23401	0,61792	0,74857	1735,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	331	-0,26174	0,45779	0,84918	1737,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	332	-0,28524	-0,23503	0,92849	1737
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	333	-0,27635	-0,32878	0,90228	1736,9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	334	-0,24562	0,53518	0,80643	1735,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	335	-0,28651	-0,16035	0,94449	1738
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	336	-0,23074	0,58367	0,77655	1735,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	337	-0,2294	-0,59049	0,77449	1739,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	338	-0,2575	-0,40489	0,87599	1736
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	339	-0,27842	-0,04502	0,95881	1737,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	340	-0,27474	0,08005	0,95751	1737
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	341	-0,19309	-0,7101	0,67568	1736,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	342	-0,15901	-0,80062	0,57662	1737
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	343	-0,26393	0,03876	0,96339	1737,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	344	-0,26204	-0,09641	0,95966	1737,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	345	-0,16537	-0,77129	0,61406	1737,5
347-0,176950,717450,671191735,1348-0,24473-0,259320,933181736,3349-0,240770,254310,936571737,9350-0,21756-0,485670,846061737,3351-0,167630,728720,661541735,3352-0,22270,4180,879671736,5353-0,186730,633570,748541735,1354-0,205340,485370,848371735,9355-0,20981-0,445480,869341736,6	346	-0,25717	-0,00924	0,9658	1737,2
348-0,24473-0,259320,933181736,3349-0,240770,254310,936571737,9350-0,21756-0,485670,846061737,3351-0,167630,728720,661541735,3352-0,22270,4180,879671736,5353-0,186730,633570,748541735,1354-0,205340,485370,848371735,9355-0,20981-0,445480,869341736,6	347	-0,17695	0,71745	0,67119	1735,1
349-0,240770,254310,936571737,9350-0,21756-0,485670,846061737,3351-0,167630,728720,661541735,3352-0,22270,4180,879671736,5353-0,186730,633570,748541735,1354-0,205340,485370,848371735,9355-0,20981-0,445480,869341736,6	348	-0,24473	-0,25932	0,93318	1736,3
350-0,21756-0,485670,846061737,3351-0,167630,728720,661541735,3352-0,22270,4180,879671736,5353-0,186730,633570,748541735,1354-0,205340,485370,848371735,9355-0,20981-0,445480,869341736,6	349	-0,24077	0,25431	0,93657	1737,9
351-0,167630,728720,661541735,3352-0,22270,4180,879671736,5353-0,186730,633570,748541735,1354-0,205340,485370,848371735,9355-0,20981-0,445480,869341736,6	350	-0,21756	-0,48567	0,84606	1737,3
352-0,22270,4180,879671736,5353-0,186730,633570,748541735,1354-0,205340,485370,848371735,9355-0,20981-0,445480,869341736,6	351	-0,16763	0,72872	0,66154	1735,3
353-0,186730,633570,748541735,1354-0,205340,485370,848371735,9355-0,20981-0,445480,869341736,6	352	-0,2227	0,418	0,87967	1736,5
354-0,205340,485370,848371735,9355-0,20981-0,445480,869341736,6	353	-0,18673	0,63357	0,74854	1735.1
355 -0,20981 -0,44548 0,86934 1736,6	354	-0,20534	0,48537	0,84837	1735,9
	355	-0,20981	-0,44548	0,86934	1736,6

356	-0,2229	-0,15509	0,9616	1736,7
357	-0,21295	-0,32644	0,9199	1736,5
358	-0,17046	0,64433	0,74333	1735,3
359	-0,15338	-0,72249	0,6739	1737,8
360	-0,10361	0,87225	0,47588	1736,4
361	-0,14411	-0,73309	0,66477	1738,2
362	-0,18065	0,49734	0,84735	1736,3
363	-0,20648	-0,12874	0,96979	1737,8
364	-0,13908	0,72924	0,66887	1736,8
365	-0,19158	0,32874	0,92392	1736,7
366	-0,20085	0,12066	0,97108	1736,3
367	-0,11376	0,81384	0,56683	1735,1
368	-0,18887	-0,25008	0,94865	1736,5
369	-0,15046	-0,63598	0,75629	1737,3
370	-0,17221	-0,41027	0,89403	1735,7
371	-0,11883	-0,76948	0,62592	1736,4
372	-0,18344	0,05583	0,98062	1736,7
373	-0,17023	0,26945	0,94759	1737,7
374	-0,15756	-0,4483	0,87888	1736,6
375	-0,13346	0,63623	0,7581	1735,8
376	-0,16204	-0,1762	0,9707	1737,7
377	-0,08581	0,83675	0,5382	1735,6
378	-0,1507	0,09781	0,98327	1737,3
379	-0,13984	-0,27943	0,94854	1735,8
380	-0,07447	0,85039	0,51819	1735,7
381	-0,05509	0,92049	0,3854	1737,1
382	-0,11954	0,51507	0,84717	1735,7
383	-0,1367	0,02741	0,98987	1737,5
384	-0,08023	-0,80977	0,58065	1737,5
385	-0,12911	-0,2941	0,94668	1737,5
386	-0,09398	0,70203	0,70321	1734,8
387	-0,12333	0,30805	0,94298	1737,5
388	-0,08386	0,76029	0,64183	1735,5
389	-0,12855	0,06248	0,98947	1737,6
390	-0,12846	-0,04713	0,99022	1737,5
391	-0,07553	-0,79089	0,60615	1736,9
392	-0,09731	0,59391	0,79689	1735,7
393	-0,11648	0,10525	0,98688	1736,9
394	-0,07916	0,73322	0,67269	1735
395	-0,11053	-0,1519	0,98181	1737,4
396	-0,10665	0,2626	0,95829	1736,9
397	-0,08853	-0,59883	0,79429	1735,8
398	-0,06702	0,78939	0,60861	1736.4
399	-0,06611	-0,79811	0,59974	1739
400	-0.09615	-0,47253	0.87552	1737.3
401	-0.10459	-0.237	0.96539	1737.3
402	-0.10108	0.30705	0.94553	1736.8
403	-0.09613	-0.41417	0.90463	1737.3
404	-0.00025	-0.00076	0.99882	1736
405	-0.10376	0.1666	0.98062	1738.2
	-,	.,	- ,	-···, -

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.6	0.0000	0.460.51	0.00000	1500 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	406	-0,08926	-0,46251	0,88238	1738,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	407	-0,09064	0,38884	0,91634	1737,3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	408	-0,05976	-0,78884	0,610/5	1737,1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	409	-0,08249	0,44241	0,89269	1737,6
411 -0.08487 -0.02272 0.99609 1738 412 -0.08135 0.09818 0.99179 1738 413 -0.07947 -0.07036 0.99428 1738 414 -0.0735 0.38774 0.91804 1736.8 415 -0.07119 0.23351 0.96987 1738.3 416 -0.06622 -0.14938 0.98654 1738.1 418 -0.06625 0.17708 0.98233 1735.8 420 -0.04514 0.64866 0.758 1735.8 421 -0.04841 -0.49653 0.86542 1736.2 422 -0.03569 -0.72371 0.68864 1737.4 424 -0.0377 0.53209 0.84436 1735.8 421 -0.03262 0.54073 0.83904 1735.9 423 -0.02127 0.6366 0.76933 1736.3 424 -0.03299 0.67456 0.73612 1737.3 430 -0.02748 0.43417 <	410	-0,08921	0,17414	0,9805	1737,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	411	-0,08487	-0,02272	0,99609	1738
413 -0,07947 -0,07036 0.99428 1738 414 -0,07315 0.38774 0.91804 1736.8 415 -0,07119 0,23351 0.96987 1738.3 416 -0,0674 0,22511 0.97179 1737.7 417 -0,06622 -0,14938 0.98654 1738.1 418 -0,06055 0,17708 0.98233 1738.1 420 -0,04514 0,64866 0,758 1735.8 421 -0,0456 0,81527 0,57703 1736.9 422 -0,03509 -0,72371 0,68864 1737.4 424 -0,03977 0,53209 0,84436 1736.8 425 -0,04493 0,21084 0.97572 1736.8 426 -0,02325 -0.6366 0,76933 1736.3 429 -0,02239 0,67456 0,73612 1737.3 430 -0,02778 -0,34817 0.93755 1739 432 -0,02127 -0,29496	412	-0,08135	0,09818	0,99179	1738
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	413	-0,07947	-0,07036	0,99428	1738
415 $-0,07119$ $0,2331$ $0,96987$ $1738,3$ 416 $-0,0674$ $0,22511$ $0,97179$ $1737,7$ 417 $-0,06622$ $-0,14938$ $0,98654$ $1738,1$ 418 $-0,06201$ $0,11032$ $0,99169$ $1737,6$ 419 $-0,0655$ $0,17708$ $0,98233$ $1738,1$ 420 $-0,04514$ $0,64866$ $0,758$ $1735,8$ 421 $-0,04841$ $-0,49653$ $0,86542$ $1736,9$ 422 $-0,03566$ $0,81527$ $0,57703$ $1736,9$ 423 $-0,03509$ $-0,72371$ $0,68864$ $1737,4$ 424 $-0,03977$ $0,53209$ $0,84436$ $1736,1$ 425 $-0,04493$ $0,21084$ $0,97572$ $1736,8$ 426 $-0,04433$ $0,21084$ $0,97572$ $1736,8$ 427 $-0,03262$ $0,54073$ $0,83904$ $1735,9$ 428 $-0,02399$ $0,67456$ $0,73612$ $1735,9$ 430 $-0,02743$ $0,49435$ $0,86828$ $1737,3$ 431 $-0,02748$ $-0,34817$ $0,93755$ 1739 432 $-0,00127$ $-0,24966$ $0,7583$ $1736,6$ 433 $-0,01227$ $-0,29496$ $0,95433$ $1736,5$ 433 $-0,01243$ $-0,00076$ $0,99882$ $1736,6$ 434 $-0,00025$ $-0,00076$ $0,99882$ $1736,6$ 435 $-0,0025$ $-0,00076$ $0,99882$ $1736,6$ 436 $-0,01146$ $0,42769$ $0,9025$ $1736,6$ </td <td>414</td> <td>-0,07335</td> <td>0,38774</td> <td>0,91804</td> <td>1736,8</td>	414	-0,07335	0,38774	0,91804	1736,8
416 -0.0674 0.22511 0.97179 1737.7 417 -0.06622 -0.14938 0.98654 1738.1 418 -0.06055 0.11032 0.99169 1737.6 419 -0.06055 0.17708 0.98233 1738.1 420 -0.04514 0.64866 0.778 1735.8 421 -0.04841 -0.49653 0.86542 $1737.6.9$ 422 -0.03506 0.81527 0.57703 1736.9 423 -0.03509 -0.72371 0.68864 1737.4 424 -0.03977 0.53209 0.84436 1736.8 425 -0.04493 0.21084 0.97572 1736.8 426 -0.04133 0.42268 0.90454 1735.8 427 -0.03262 0.54073 0.83904 1735.9 430 -0.02245 -0.6366 0.76933 1736.5 431 -0.02743 0.49435 0.86828 1737.3 431 -0.02778 -0.34817 0.93755 1739 432 -0.02127 -0.29496 0.95433 1736.5 433 -0.01182 -0.82907 0.5575 1736.6 434 -0.00025 -0.00076 0.99882 1736.6 433 -0.01346 0.42769 0.9025 1736.6 434 -0.001346 0.42769 0.9025 1736.6 434 -0.00255 -0.00076 0.99882 1736.6 434 -0.00136 0.4266 0.88362 1736.5	415	-0,07119	0,23351	0,96987	1738,3
417 -0.06622 -0.14938 0.98654 $1738,1$ 418 -0.06201 0.11032 0.99169 $1737,6$ 419 -0.06055 0.17708 0.98233 $1738,1$ 420 -0.04514 0.64866 0.758 $1735,8$ 421 -0.04841 -0.49653 0.86542 $1736,2$ 422 -0.03056 0.81527 0.57703 $1736,9$ 423 -0.03509 -0.72371 0.68864 $1737,4$ 424 -0.03977 0.53209 0.84436 $1736,1$ 425 -0.04493 0.21084 0.97572 $1736,8$ 426 -0.04133 0.42268 0.90454 $1736,8$ 427 -0.03262 0.54073 0.83904 $1735,9$ 428 -0.02825 -0.6366 0.776312 $1735,9$ 430 -0.02743 0.49435 0.86828 $1737,3$ 431 -0.02743 0.49435 0.86828 $1737,3$ 432 -0.02127 -0.29496 0.95433 $1736,5$ 433 -0.01182 -0.82907 0.5575 $1736,6$ 434 -0.00025 -0.00076 0.99882 $1736,6$ 435 -0.02025 -0.00076 0.99882 $1736,6$ 434 -0.00255 -0.00076 0.99882 $1736,6$ 434 -0.00255 -0.00076 0.99882 $1736,6$ 434 -0.00256 -0.00076 0.99882 $1736,5$ 441 -0.00256 </td <td>416</td> <td>-0,0674</td> <td>0,22511</td> <td>0,97179</td> <td>1737,7</td>	416	-0,0674	0,22511	0,97179	1737,7
418 -0.06201 0.11032 0.99169 1737.6 419 -0.06055 0.17708 0.98233 1738.1 420 -0.04514 0.64866 0.758 1735.8 421 -0.04841 -0.49653 0.86542 1736.2 422 -0.03056 0.81527 0.57703 1736.9 423 -0.03509 -0.72371 0.68864 1737.4 424 -0.03977 0.53209 0.84436 1736.9 425 -0.04493 0.21084 0.97572 1736.8 426 -0.04133 0.42268 0.90454 1736.8 427 -0.03262 0.54073 0.83904 1735.9 428 -0.02825 -0.6366 0.76933 1736.3 429 -0.02399 0.67456 0.73612 1737.3 430 -0.02743 0.49435 0.86828 1737.3 431 -0.02778 -0.34817 0.93755 1736.5 433 -0.01182 -0.82907 0.5575 1736.6 434 -0.0025 -0.00076 0.99882 1736.5 436 -0.01146 0.42769 0.9025 1736.5 437 -0.0025 -0.00076 0.99882 1736.5 438 -0.0141 -0.2215 0.9759 1737.5 436 -0.0146 0.42769 0.9025 1736.3 441 -0.0025 -0.00076 0.99882 1736.3 444 -0.00264 0.63	417	-0,06622	-0,14938	0,98654	1738,1
419 $-0,06055$ $0,17708$ $0,98233$ $1738,1$ 420 $-0,04514$ $0,64866$ $0,758$ $1735,8$ 421 $-0,04841$ -0.49653 0.86542 $1736,2$ 422 -0.03509 $-0,72371$ $0,68864$ $1737,4$ 424 $-0,03977$ $0,53209$ $0,84436$ $1736,1$ 425 -0.04493 $0,21084$ $0,97572$ $1736,8$ 426 $-0,04133$ $0,42268$ $0,90454$ $1736,8$ 427 $-0,03262$ $0,54073$ $0,83904$ $1735,9$ 428 $-0,02325$ $-0,6366$ $0,76933$ $1736,3$ 429 $-0,02743$ $0,49435$ $0,86828$ $1737,3$ 431 $-0,02743$ $0,49435$ $0,86828$ $1737,3$ 432 $-0,02127$ -0.29496 $0,95433$ $1736,5$ 433 $-0,01182$ $-0,82907$ $0,5575$ $1736,6$ 434 $-0,0025$ $-0,00076$ $0,99882$ 1736 435 $-0,0225$ $-0,0801$ $0,99624$ $1737,5$ 436 $-0,01346$ $0,42769$ $0,9025$ $1736,6$ 437 $-0,00425$ $-0,00076$ $0,99882$ $1736,3$ 440 $-0,01175$ $-0,0504$ $0,99872$ $1736,3$ 441 $-0,00253$ $0,77859$ $1735,3$ 444 $-0,00466$ $0,63362$ $0,77854$ $1735,3$ 444 $-0,00426$ $0,63362$ $0,77289$ $1737,1$ 445 $-0,0011$ $0,81388$ $0,7$	418	-0,06201	0,11032	0,99169	1737,6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	419	-0,06055	0,17708	0,98233	1738,1
421 -0.04841 -0.49653 0.86542 $1736,2$ 422 -0.03056 0.81527 0.57703 $1736,9$ 423 -0.03509 -0.72371 0.68864 $1737,4$ 424 -0.03977 0.53209 0.84436 $1736,1$ 425 -0.04493 0.21084 0.97572 $1736,8$ 426 -0.04133 0.42268 0.90454 $1736,8$ 427 -0.03262 0.54073 0.83904 $1735,9$ 428 -0.02825 -0.6366 0.76933 $1736,3$ 429 -0.02399 0.67456 0.73612 $1735,9$ 430 -0.02743 0.49435 0.86828 $1737,3$ 431 -0.02743 0.49435 0.86828 $1737,3$ 432 -0.02127 -0.29496 0.95433 $1736,5$ 433 -0.01182 -0.82907 0.5575 $1736,6$ 434 -0.00025 -0.00076 0.99882 $1736,6$ 435 -0.02025 -0.00076 0.99882 $1736,6$ 436 -0.01346 0.42769 0.9025 $1736,6$ 437 -0.00025 -0.00076 0.99882 $1736,6$ 434 -0.00125 -0.00076 0.99882 $1736,6$ 434 -0.0025 -0.00076 0.99872 $1738,8$ 440 -0.01346 0.42769 0.9025 $1736,6$ 437 -0.00867 -0.79859 0.60121 $1737,5$ 440 -0.00146 <td>420</td> <td>-0,04514</td> <td>0,64866</td> <td>0,758</td> <td>1735,8</td>	420	-0,04514	0,64866	0,758	1735,8
422 -0.03056 0.81527 0.57703 $1736,9$ 423 -0.03509 -0.72371 0.68864 $1737,4$ 424 -0.03977 0.53209 0.84436 $1736,1$ 425 -0.04493 0.21084 0.97572 $1736,8$ 426 -0.04133 0.42268 0.90454 $1735,9$ 428 -0.02825 -0.6366 0.76933 $1736,3$ 429 -0.02399 0.67456 0.73612 $1735,9$ 430 -0.02743 0.49435 0.86828 $1737,3$ 431 -0.02778 -0.34817 0.93755 1739 432 -0.02127 -0.29496 0.95433 $1736,5$ 433 -0.01182 -0.82907 0.5575 $1736,6$ 434 -0.00025 -0.00076 0.99882 $1736,6$ 434 -0.0025 -0.00076 0.99882 $1736,6$ 434 -0.0025 -0.00076 0.99882 $1736,6$ 437 -0.0025 -0.00076 0.99882 $1736,6$ 438 -0.01346 0.42769 0.9025 $1736,6$ 439 -0.00867 -0.79859 0.60121 $1737,5$ 4430 -0.0141 -0.2215 0.9759 $1736,3$ 4441 -0.00053 0.79013 0.61108 $1736,3$ 4441 -0.00053 0.79013 0.61108 $1735,2$ 4443 -0.00176 0.99882 $1735,2$ 4444 -0.00053 0.79013	421	-0,04841	-0,49653	0,86542	1736,2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	422	-0,03056	0,81527	0,57703	1736,9
424 $-0,03977$ $0,53209$ $0,84436$ $1736,1$ 425 $-0,04433$ $0,21084$ $0,97572$ $1736,8$ 426 $-0,04133$ $0,42268$ $0,90454$ $1735,9$ 427 $-0,03262$ $0,54073$ $0,83904$ $1735,9$ 428 $-0,02825$ $-0,6366$ $0,76933$ $1736,3$ 429 $-0,02399$ $0,67456$ $0,73612$ $1735,9$ 430 $-0,02743$ $0,49435$ $0,86828$ $1737,3$ 431 $-0,02778$ $-0,34817$ $0,93755$ 1739 432 $-0,02127$ $-0,29496$ $0,95433$ $1736,5$ 433 $-0,01182$ $-0,82907$ $0,5575$ $1736,6$ 434 $-0,0025$ $-0,00076$ $0,99882$ $1736,6$ 435 $-0,02025$ $-0,0801$ $0,99624$ $1737,5$ 436 $-0,01346$ $0,42769$ $0,9025$ $1736,6$ 437 $-0,00025$ $-0,00076$ $0,99882$ $1736,6$ 438 $-0,0141$ $-0,2215$ $0,9759$ $1739,5$ 439 $-0,00867$ $-0,79859$ $0,60121$ $1737,5$ 440 $-0,01175$ $-0,05004$ $0,99872$ $1736,3$ 441 $-0,00264$ $0,63362$ $0,77854$ $1735,2$ 443 $-0,00456$ $0,13624$ $0,99109$ $1738,8$ 444 $-0,00253$ $0,79013$ $0,61108$ $1735,4$ 446 $-0,00113$ $0,61288$ $0,75263$ $1735,6$ 444 $0,00254$ 0	423	-0,03509	-0,72371	0,68864	1737,4
425 -0.04493 0.21084 0.97572 $1736,8$ 426 -0.04133 0.42268 0.90454 $1736,8$ 427 -0.03262 0.54073 0.83904 $1735,9$ 428 -0.02825 -0.6366 0.76933 $1736,3$ 429 -0.02399 0.67456 0.73612 $1735,9$ 430 -0.02743 0.49435 0.86828 $1737,3$ 431 -0.02778 -0.34817 0.93755 1739 432 -0.02127 -0.29496 0.95433 $1736,5$ 433 -0.01182 -0.82907 0.5575 $1736,6$ 434 -0.00025 -0.00076 0.99882 $1736,6$ 435 -0.02025 -0.0801 0.99624 $1737,5$ 436 -0.01346 0.42769 0.9025 $1736,6$ 437 -0.00025 -0.00076 0.99882 $1736,6$ 438 -0.01441 -0.2215 0.9759 $1739,5$ 439 -0.00867 -0.79859 0.60121 $1737,5$ 440 -0.01175 -0.05004 0.99872 $1738,2$ 441 -0.00264 0.63362 0.77854 $1735,2$ 443 -0.00456 0.13624 0.99109 $1738,8$ 444 -0.00264 0.65362 0.77289 $1737,1$ 445 -0.0011 0.81388 0.57834 $1735,4$ 446 -0.00053 0.79013 0.66183 $1735,4$ 446 -0.00778	424	-0,03977	0,53209	0,84436	1736,1
426 $-0,04133$ $0,42268$ $0,90454$ $1736,8$ 427 $-0,03262$ $0,54073$ $0,83904$ $1735,9$ 428 $-0,02825$ $-0,6366$ $0,76933$ $1736,3$ 429 $-0,02399$ $0,67456$ $0,73612$ $1735,9$ 430 $-0,02743$ $0,49435$ $0,86828$ $1737,3$ 431 $-0,02778$ $-0,34817$ $0,93755$ 1739 432 $-0,02127$ $-0,29496$ $0,95433$ $1736,5$ 433 $-0,01182$ $-0,82907$ $0,5575$ $1736,6$ 434 $-0,00025$ $-0,00076$ $0,99882$ 1736 435 $-0,0225$ $-0,0801$ $0,99624$ $1737,5$ 436 $-0,01346$ $0,42769$ $0,9025$ 1736 437 $-0,00025$ $-0,00076$ $0,99882$ 1736 438 $-0,01441$ $-0,2215$ $0,9759$ $1739,55$ 439 $-0,00867$ $-0,79859$ $0,60121$ $1737,5$ 440 $-0,01175$ $-0,05004$ $0,99872$ $1738,2$ 441 $-0,00593$ $0,466$ $0,88362$ $1736,3$ 442 $-0,00402$ $0,62496$ $0,77854$ $1735,2$ 443 $-0,00402$ $0,62496$ $0,77854$ $1735,2$ 444 $-0,00264$ $0,63362$ $0,77289$ $1737,1$ 445 $-0,0011$ $0,81388$ $0,57834$ $1735,6$ 444 $-0,00264$ $0,63562$ $0,77289$ $1737,6$ 444 $-0,00264$ $0,63562$	425	-0,04493	0,21084	0,97572	1736,8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	426	-0,04133	0,42268	0,90454	1736,8
428 -0.02825 -0.6366 0.76933 $1736,3$ 429 -0.02399 0.67456 0.73612 $1735,9$ 430 -0.02743 0.49435 0.86828 $1737,3$ 431 -0.02778 -0.34817 0.93755 1739 432 -0.02127 -0.29496 0.95433 $1736,5$ 433 -0.01182 -0.82907 0.5575 $1736,6$ 434 -0.0025 -0.00076 0.99882 1736 435 -0.02025 -0.0801 0.99624 $1737,5$ 436 -0.01346 0.42769 0.9025 1736 437 -0.00025 -0.00076 0.99882 1736 438 -0.01441 -0.2215 0.9759 $1739,5$ 439 -0.00867 -0.79859 0.60121 $1737,5$ 440 -0.01175 -0.05004 0.99872 $1736,3$ 441 -0.00593 0.466 0.88362 $1736,3$ 442 -0.00402 0.62496 0.77854 $1735,2$ 443 -0.00426 0.63362 0.77854 $1735,2$ 443 -0.0011 0.81388 0.57834 $1735,4$ 444 -0.00264 0.63362 0.77289 $1737,6$ 444 -0.0013 0.79013 0.61108 $1736,6$ 444 -0.00264 0.63362 0.77263 $1735,2$ 444 -0.0013 0.79013 0.61108 $1735,4$ 444 -0.0013 0.79013 <td>427</td> <td>-0,03262</td> <td>0,54073</td> <td>0,83904</td> <td>1735,9</td>	427	-0,03262	0,54073	0,83904	1735,9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	428	-0,02825	-0,6366	0,76933	1736,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	429	-0,02399	0,67456	0,73612	1735,9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	430	-0,02743	0,49435	0,86828	1737,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	431	-0,02778	-0,34817	0,93755	1739
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	432	-0,02127	-0,29496	0,95433	1736,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	433	-0,01182	-0,82907	0,5575	1736,6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	434	-0,00025	-0,00076	0,99882	1736
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	435	-0,02025	-0,0801	0,99624	1737,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	436	-0,01346	0,42769	0,9025	1736
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	437	-0,00025	-0,00076	0,99882	1736
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	438	-0,01441	-0,2215	0,9759	1739,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	439	-0,00867	-0,79859	0,60121	1737,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	440	-0,01175	-0,05004	0,99872	1738,2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	441	-0,00593	0,466	0,88362	1736,3
443-0,004560,136240,991091738,8444-0,002640,633620,772891737,1445-0,00110,813880,578341735,4446-0,000530,790130,611081736,14470,00382-0,655880,752631735,24480,006040,242590,969831737,64490,007780,012190,999211736,94500,0113-0,162850,986581738,14510,01213-0,419390,908381739,14520,01341-0,65870,751161736,64530,02580,210050,976961737,24540,025410,02110,99891737,14550,01531-0,794350,604891735,6	442	-0,00402	0,62496	0,77854	1735,2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	443	-0,00456	0,13624	0,99109	1738,8
445-0,00110,813880,578341735,4446-0,000530,790130,611081736,14470,00382-0,655880,752631735,24480,006040,242590,969831737,64490,007780,012190,999211736,94500,0113-0,162850,986581738,14510,01213-0,419390,908381739,14520,01341-0,65870,751161736,64530,020580,210050,976961737,24540,025410,02110,99891737,14550,01531-0,794350,604891735,6	444	-0,00264	0,63362	0,77289	1737,1
446-0,000530,790130,611081736,14470,00382-0,655880,752631735,24480,006040,242590,969831737,64490,007780,012190,999211736,94500,0113-0,162850,986581738,14510,01213-0,419390,908381739,14520,01341-0,65870,751161736,64530,020580,210050,976961737,24540,025410,02110,99891737,14550,01531-0,794350,604891735,6	445	-0,0011	0,81388	0,57834	1735,4
4470,00382-0,655880,752631735,24480,006040,242590,969831737,64490,007780,012190,999211736,94500,0113-0,162850,986581738,14510,01213-0,419390,908381739,14520,01341-0,65870,751161736,64530,020580,210050,976961737,24540,025410,02110,99891737,14550,01531-0,794350,604891735,6	446	-0,00053	0,79013	0,61108	1736,1
4480,006040,242590,969831737,64490,007780,012190,999211736,94500,0113-0,162850,986581738,14510,01213-0,419390,908381739,14520,01341-0,65870,751161736,64530,020580,210050,976961737,24540,025410,02110,99891737,14550,01531-0,794350,604891735,6	447	0,00382	-0,65588	0,75263	1735,2
4490,007780,012190,999211736,94500,0113-0,162850,986581738,14510,01213-0,419390,908381739,14520,01341-0,65870,751161736,64530,020580,210050,976961737,24540,025410,02110,99891737,14550,01531-0,794350,604891735,6	448	0,00604	0,24259	0,96983	1737,6
4500,0113-0,162850,986581738,14510,01213-0,419390,908381739,14520,01341-0,65870,751161736,64530,020580,210050,976961737,24540,025410,02110,99891737,14550,01531-0,794350,604891735,6	449	0,00778	0,01219	0,99921	1736,9
4510,01213-0,419390,908381739,14520,01341-0,65870,751161736,64530,020580,210050,976961737,24540,025410,02110,99891737,14550,01531-0,794350,604891735,6	450	0,0113	-0,16285	0,98658	1738,1
4520,01341-0,65870,751161736,64530,020580,210050,976961737,24540,025410,02110,99891737,14550,01531-0,794350,604891735,6	451	0,01213	-0,41939	0,90838	1739,1
4530,020580,210050,976961737,24540,025410,02110,99891737,14550,01531-0,794350,604891735,6	452	0,01341	-0,6587	0,75116	1736,6
454 0,02541 0,0211 0,9989 1737,1 455 0,01531 -0,79435 0,60489 1735,6	453	0,02058	0,21005	0,97696	1737.2
455 0,01531 -0,79435 0,60489 1735,6	454	0,02541	0,0211	0,9989	1737.1
	455	0,01531	-0,79435	0,60489	1735,6

456	0,02608	0,42951	0,90156	1736,3
457	0,01258	0,94949	0,31459	1738,7
458	0,04358	-0,44404	0,89492	1738,1
459	0,03537	0,74378	0,665	1735,2
460	0,05054	-0,36123	0,93062	1737,3
461	0,05526	0,24316	0,96766	1736,8
462	0,05707	-0,10186	0,99287	1737,6
463	0,05431	0,40771	0,91186	1738,7
464	0,04901	0,65932	0,74845	1735,7
465	0,05207	0,64238	0,76255	1735,4
466	0,06634	0,28346	0,95609	1737,1
467	0,06546	-0,33918	0,93857	1738,3
468	0,0347	-0,86468	0,49802	1735,4
469	0,07364	0,19777	0,97713	1737,5
470	0,0547	0,69373	0,71634	1735,8
471	0,07344	-0,37011	0,92678	1739,2
472	0,0438	-0,84125	0,53627	1735,7
473	0,07614	0,38027	0,9221	1738,7
474	0,07889	-0,41899	0,9033	1736,1
475	0,08722	0,13231	0,98686	1737,2
476	0,04365	0,8761	0,47756	1735,9
477	0,06518	0,69846	0,71104	1736,1
478	0,04381	0,8859	0,45977	1736,5
479	0,08661	-0,43517	0,89591	1737,7
480	0,09365	-0,3101	0,94621	1738,3
481	0,05467	0,83207	0,54919	1735,4
482	0,07156	-0,69412	0,71537	1737
483	0,09491	0,32444	0,94076	1737,5
484	0,1031	0,06071	0,99224	1737,1
485	0,06414	-0,79464	0,60167	1736
486	0,10304	0,33816	0,93468	1736,9
487	0,05728	0,85324	0,51674	1736,6
488	0,10693	-0,25333	0,96185	1738,8
489	0,06772	0,79128	0,60597	1736,3
490	0,05888	0,86615	0,49487	1736,9
491	0,09903	-0,54628	0,83113	1737,2
492	0,11793	0,22895	0,96569	1737,1
493	0,10661	0,47799	0,87066	1736,3
494	0,10172	0,60537	0,78859	1737
495	0,12646	0,16719	0,97722	1737,1
496	0,10776	-0,55228	0,82674	1738,2
497	0,12327	-0,32748	0,9369	1738,3
498	0,12505	0,37131	0,91979	1737,7
499	0,1351	0,00854	0,99082	1738,1
500	0,13391	0,15797	0,97834	1738,1
501	0,14011	-0,05486	0,98879	1738,4
502	0,14246	0,30555	0,94045	1736,4
503	0,14313	-0,37093	0,91736	1737,8
504	0,07515	0,87903	0,46939	1736,9
505	0,07352	0,88919	0,44913	1736,2

506 0,15508 -0,29685 0,9421 1737,9 507 0,1473 -0,52828 0,83619 1738,1 509 0,18351 -0,02166 0,98268 1737,9 510 0,18259 0,15902 0,97034 1738,3 511 0,17734 0,29107 0,93978 1737,5 512 0,17695 -0,3107 0,93382 1738 513 0,16056 0,50589 0,84615 1736,1 514 0,16352 -0,48626 0,85872 1738,6 515 0,17543 0,36881 0,91137 1735,8 516 0,1501 -0,60781 0,77848 1736,4 517 0,19059 0,14982 0,96989 1737,6 518 0,11493 0,80685 0,57674 1735,4 519 0,1702 -0,51518 0,83939 1737,4 520 0,11635 -0,64773 0,74545 1737,1 522 0,20134 0,32607 0,922					
507 0.1473 -0.52828 0.83619 1738.1 508 0.17867 -0.06966 0.98146 1738.1 509 0.18259 0.15902 0.97034 1737.9 510 0.18259 0.15902 0.93978 1737.5 512 0.17695 -0.3107 0.93978 1737.5 513 0.16056 0.50589 0.84615 1738.1 514 0.16352 -0.48626 0.88872 1738.8 516 0.1501 -0.60781 0.77848 1735.4 517 0.19059 0.14982 0.96989 1737.6 518 0.1143 0.80685 0.57674 1735.4 519 0.1757 -0.45429 0.87438 1739.7 520 0.1702 -0.51518 0.83939 1737.1 521 0.15363 -0.64773 0.74545 1731. 522 0.16815 -0.59571 0.78536 1738.4 523 0.20134 0.32607 0.92	506	0,15508	-0,29685	0,9421	1737,9
508 0,17867 -0,06966 0,98146 1738,1 509 0,18351 -0,02166 0,98268 1737,9 510 0,18259 0,15902 0,97034 1738,3 511 0,17734 0,29107 0,93978 1737,5 512 0,17695 -0,3107 0,9382 1738 513 0,16056 0.50589 0,84615 1736,4 514 0,16352 -0.48626 0,85872 1738,6 515 0,17543 0,36881 0,91137 1735,4 516 0,1505 0,4788 0,7674 1735,4 517 0,1905 0,14982 0,96989 1737,6 518 0,11702 -0.51518 0,87438 1739,7 520 0,1702 -0.51518 0,87438 1737,1 522 0,16815 -0.59571 0,78536 1738,4 523 0,20176 -0.32218 0,95321 1738,4 524 0,19981 -0,32715 0,9220	507	0,1473	-0,52828	0,83619	1738,1
509 0,18351 -0,02166 0,98268 1737,9 510 0,18259 0,15902 0,97034 1738,3 511 0,17734 0,29107 0,93978 1737,5 512 0,17695 -0,3107 0,93382 1738 513 0,16056 0,50589 0,84615 1736,1 514 0,16352 -0,48626 0,85872 1738,6 515 0,17543 0,36881 0,91137 1735,8 516 0,1501 -0,60781 0,77848 1736,4 517 0,19059 0,14982 0,96989 1737,6 518 0,11493 0,80685 0,57674 1735,4 519 0,1757 -0,45429 0,87438 1739,7 520 0,1702 -0,51518 0,83939 1737,2 521 0,15363 -0,64773 0,74545 1737,1 522 0,20134 0,32607 0,92208 1738,4 523 0,21557 0,04212 0,775	508	0,17867	-0,06966	0,98146	1738,1
510 0,18259 0,15902 0,97034 1738,3 511 0,17734 0,29107 0,93978 1737,5 512 0,17695 -0,3107 0,93382 1738 513 0,16056 0,50589 0,84615 1736,1 514 0,16352 -0,48626 0,85872 1738,8 516 0,1501 -0,60781 0,77848 1735,4 517 0,19059 0,14982 0,96989 1737,6 518 0,11493 0,80685 0,57674 1735,4 519 0,1757 -0,45429 0,87438 1739,7 520 0,1702 -0,51518 0,83939 1737,2 521 0,15363 -0,64773 0,74545 1738 523 0,20576 -0,22218 0,95321 1738,4 524 0,19981 -0,32715 0,9232 1737,4 525 0,2134 0,32607 0,92208 1735,6 526 0,2145 -0,04121 0,973,3<	509	0,18351	-0,02166	0,98268	1737,9
511 0,17734 0,29107 0,93978 1737,5 512 0,17695 -0,3107 0,93382 1738 513 0,16056 0,50589 0,84615 1736,1 514 0,16352 -0,48626 0,85872 1738,6 515 0,17543 0,36881 0,91137 1735,8 516 0,1501 -0,60781 0,77848 1736,4 517 0,19059 0,14982 0,96089 1737,6 518 0,11493 0,80685 0,57674 1735,4 519 0,1757 -0,45429 0,87438 1737,2 520 0,1702 -0,51518 0,83939 1737,2 521 0,15363 -0,64773 0,74545 1737,1 522 0,16815 -0,59571 0,78336 1738,4 523 0,20576 -0,2218 0,95321 1737,4 525 0,20134 0,32607 0,9208 1735,6 526 0,21455 -0,14911 0,964	510	0,18259	0,15902	0,97034	1738,3
512 0,17695 -0,3107 0,93382 1738 513 0,16056 0,50589 0,84615 1736,1 514 0,16352 -0,48626 0,85872 1738,6 515 0,17543 0,36881 0,91137 1735,8 516 0,1501 -0,60781 0,77848 1736,4 517 0,19059 0,14982 0,96989 1737,6 518 0,11493 0,80685 0,57674 1735,4 519 0,1757 -0,45429 0,87438 1739,7 520 0,1702 -0,51518 0,83939 1737,2 521 0,15363 -0,64773 0,74545 1737,4 522 0,16815 -0,59571 0,78536 1738,8 523 0,20134 0,32607 0,92208 1735,6 524 0,19981 -0,32715 0,9221 1737,3 525 0,2114 -0,15911 0,96434 1738,8 526 0,2135 -0,16429 0,962	511	0,17734	0,29107	0,93978	1737,5
513 0,16056 0,5089 0,84615 1736,1 514 0,16352 -0,48626 0,85872 1738,6 515 0,17543 0,36881 0,91137 1735,8 516 0,1501 -0,60781 0,77848 1736,4 517 0,19059 0,14982 0,96989 1737,6 518 0,11702 -0,45429 0,87438 1739,7 520 0,1702 -0,51518 0,83939 1737,2 521 0,15363 -0,64773 0,74545 1737,1 522 0,16815 -0,5971 0,78536 1738 523 0,20576 -0,22218 0,95321 1738,4 524 0,19981 -0,32715 0,92208 1735,6 526 0,2134 0,32607 0,92208 1735,6 527 0,21343 0,1699 0,96212 1737,3 528 0,21557 0,16429 0,96212 1737,3 530 0,2243 -0,07729 0,9709	512	0,17695	-0,3107	0,93382	1738
514 0,16352 -0,48626 0,85872 1738,6 515 0,17543 0,36881 0,91137 1735,8 516 0,1501 -0,60781 0,77848 1736,4 517 0,19059 0,14982 0,96989 1737,6 518 0,11493 0,80685 0,57674 1735,4 519 0,1757 -0,45429 0,87438 1739,7 520 0,1702 -0,51518 0,83939 1737,2 521 0,15363 -0,64773 0,74545 1737,1 522 0,16815 -0,59571 0,78536 1738 523 0,20576 -0,2218 0,95321 1737,4 525 0,20134 0,32607 0,92208 1735,6 526 0,215 -0,04121 0,97546 1737,3 527 0,21345 -0,15911 0,96434 1738,8 528 0,21557 0,16429 0,96212 1737,3 531 0,22233 0,36195 0,903	513	0,16056	0,50589	0,84615	1736,1
515 0,17543 0,36881 0,91137 1735,8 516 0,1501 -0,60781 0,77848 1736,4 517 0,19059 0,14982 0,96989 1737,6 518 0,11493 0,80685 0,57674 1735,4 519 0,1757 -0,45429 0,87438 1739,7 520 0,1702 -0,51518 0,83939 1737,2 521 0,15363 -0,64773 0,74545 1737,1 522 0,16815 -0,59571 0,78536 1738,4 524 0,19981 -0,32715 0,9232 1737,4 525 0,2015 -0,04121 0,97546 1737,6 527 0,21345 -0,15911 0,96434 1738,8 528 0,21557 0,16429 0,96212 1737,3 530 0,224 -0,07729 0,97095 1737,1 531 0,2233 0,36195 0,90322 1734,8 532 0,2342 -0,24729 0,970	514	0,16352	-0,48626	0,85872	1738,6
516 $0,1501$ -0.60781 0.77848 $1736,4$ 517 $0,19059$ $0,14982$ $0,96989$ $1737,6$ 518 $0,11493$ $0,80685$ 0.57674 $1735,4$ 519 $0,1757$ -0.45429 $0,87438$ $1739,7$ 520 $0,1702$ -0.51518 $0,83939$ $1737,2$ 521 $0,15363$ -0.64773 0.74545 $1737,1$ 522 $0,16815$ -0.59571 0.78536 1738 523 0.20576 -0.22218 0.95321 $1738,4$ 524 $0,19981$ -0.32715 0.9232 $1737,4$ 525 $0,20134$ 0.32607 0.92208 $1735,6$ 527 $0,21345$ $-0,15911$ 0.96434 $1738,8$ 528 $0,21557$ $0,16429$ 0.96212 $1737,1$ 531 $0,2223$ $0,36195$ 0.90322 $1737,4$ 532 $0,23342$ $-0,24091$ 0.94157 $1737,3$ 533 $0,1224$ $-0,07729$ 0.97095 $1737,1$ 531 $0,22233$ $0,36195$ 0.90322 $1734,8$ 532 $0,2342$ $-0,24091$ 0.94157 $1737,5$ 536 $0,12677$ -0.85631 0.49911 $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,26181$ $0,12776$ 0.95556 $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 544 $0,27193$ $0,078$ $0,95$	515	0,17543	0,36881	0,91137	1735,8
517 $0,19059$ $0,14982$ $0,96989$ $1737,6$ 518 $0,11493$ $0,80685$ $0,57674$ $1735,4$ 519 $0,1702$ $-0,45429$ $0,87438$ $1737,2$ 520 $0,1702$ $-0,51518$ $0,83939$ $1737,2$ 521 $0,15363$ $-0,64773$ $0,74545$ $1737,1$ 522 $0,16815$ $-0,59571$ $0,78536$ 17388 523 $0,20576$ $-0,22218$ $0,95321$ $1737,4$ 525 $0,20134$ $0,32607$ $0,92208$ $1735,6$ 526 $0,215$ $-0,04121$ $0,97546$ $1737,6$ 527 $0,21345$ $-0,15911$ $0,96434$ $1738,8$ 528 $0,2157$ $0,16429$ $0,96212$ $1737,3$ 529 $0,14338$ $0,76696$ $0,62336$ $1735,8$ 530 $0,224$ $-0,07729$ $0,97095$ $1737,1$ 531 $0,22233$ $0,36195$ $0,90322$ $1734,8$ 532 $0,23342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,13592$ $-0,82562$ $0,54558$ $1736,3$ 534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,2636$ $-0,5306$ $1738,3$ 544 $0,26113$ $-0,15869$ $0,95218$ 173	516	0,1501	-0,60781	0,77848	1736,4
518 $0,11493$ $0,80685$ $0,57674$ $1735,4$ 519 $0,1757$ $-0,45429$ $0,87438$ $1739,7$ 520 $0,1702$ $-0,51518$ $0,83939$ $1737,2$ 521 $0,15363$ $-0,64773$ $0,74545$ $1737,1$ 522 $0,16815$ $-0,59571$ $0,78536$ 1738 523 $0,20576$ $-0,22218$ $0,95321$ $1738,4$ 524 $0,19981$ $-0,32715$ $0,92208$ $1735,6$ 526 $0,215$ $-0,04121$ $0,97546$ $1737,6$ 527 $0,21345$ $-0,15911$ $0,96434$ $1738,8$ 528 $0,21557$ $0,16429$ $0,96212$ $1737,3$ 529 $0,14338$ $0,76696$ $0,62336$ $1735,8$ 530 $0,224$ $-0,07729$ $0,97095$ $1737,1$ 531 $0,2223$ $0,36195$ $0,90322$ $1734,8$ 532 $0,23342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,13592$ $-0,82562$ $0,54558$ $1736,2$ 534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,2435$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,26448$ $-0,00348$ $0,96391$ $1737,3$ 541 $0,26448$ $-0,07315$ $0,79877$ $1737,6$ 545 $0,1907$ $-0,70108$ $0,68252$ $1734,4$ 54	517	0,19059	0,14982	0,96989	1737,6
519 $0,1757$ $-0,45429$ $0,87438$ $1739,7$ 520 $0,1702$ $-0,51518$ $0,83939$ $1737,2$ 521 $0,15363$ $-0,64773$ $0,74545$ $1737,1$ 522 $0,16815$ $-0,9571$ $0,78536$ 11738 523 $0,20576$ $-0,22218$ $0,95321$ $1738,4$ 524 $0,19981$ $-0,32715$ $0,9232$ $1737,4$ 525 $0,20134$ $0,32607$ $0,92208$ $1735,6$ 526 $0,215$ $-0,04121$ $0,97546$ $1737,6$ 527 $0,21345$ $-0,15911$ $0,96434$ $1738,8$ 528 $0,21557$ $0,16429$ $0,96212$ $1737,3$ 529 $0,14338$ $0,76696$ $0,62336$ $1735,8$ 530 $0,224$ $-0,07729$ $0,97095$ $1737,1$ 531 $0,22233$ $0,36195$ $0,90322$ $1734,8$ 532 $0,2342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,12677$ $-0,85651$ $0,96266$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,22636$ $-0,5598$ $0,736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 544 $0,26448$ $-0,00348$ $0,96391$ $1737,3$ 542 $0,26336$ $-0,7315$ $0,70887$ 17	518	0,11493	0,80685	0,57674	1735,4
520 $0,1702$ $-0,51518$ $0,83939$ $1737,2$ 521 $0,15363$ $-0,64773$ $0,74545$ $1737,1$ 522 $0,20576$ $-0,59571$ $0,78536$ 1738 523 $0,20576$ $-0,22218$ $0,95321$ $1738,4$ 524 $0,19981$ $-0,32715$ $0,9232$ $1737,4$ 525 $0,20134$ $0,32607$ $0,92208$ $1735,6$ 526 $0,215$ $-0,04121$ $0,97546$ $1737,6$ 527 $0,21345$ $-0,15911$ $0,96434$ $1738,8$ 528 $0,21557$ $0,16429$ $0,96212$ $1737,3$ 529 $0,14338$ $0,76696$ $0,62336$ $1735,8$ 530 $0,224$ $-0,07729$ $0,97095$ $1737,1$ 531 $0,22233$ $0,36195$ $0,90322$ $1734,8$ 532 $0,23342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,13592$ $-0,82562$ $0,54558$ $1736,2$ 534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,3$ 543 $0,26036$ $-0,70108$ $0,68252$ $1734,4$ 544 $0,27193$ $0,078$ $0,958$	519	0,1757	-0,45429	0,87438	1739,7
5210,15363 $-0,64773$ 0,745451737,1 522 0,16815 $-0,59571$ 0,785361738 523 0,20576 $-0,22218$ 0,953211738,4 524 0,19981 $-0,32715$ 0,92281735,6 526 0,215 $-0,04121$ 0,975461737,6 527 0,21345 $-0,15911$ 0,964341738,8 528 0,21570,164290,962121737,3 529 0,143380,766960,623361735,8 530 0,224 $-0,07729$ 0,970951737,1 531 0,222330,361950,903221734,8 532 0,23342 $-0,24091$ 0,941571737,3 533 0,13592 $-0,82562$ 0,545581736,2 534 0,14099 $-0,81264$ 0,56261735,3 535 0,243050,00330,969671737,5 536 0,12677 -0.85631 0,499111736,8 537 0,216910,48360,846211735,5 538 0,236360,359980,900391734,8 539 0,261810,127760,955561736,3 541 0,26448 $-0,00348$ 0,963911737,3 542 0,26336 $-0,70108$ 0,682521734,4 544 0,271930,0780,958871737,6 544 0,271930,0780,958871737,6 544 0,25036 $-0,46311$ 0,851911739,6 549 0,252	520	0,1702	-0,51518	0,83939	1737,2
5220,16815-0,595710,785361738 523 0,20576-0,222180,953211738,4 524 0,19981-0,327150,92321737,4 525 0,201340,326070,922081735,6 526 0,215-0,041210,975461737,3 527 0,21345-0,159110,964341738,8 528 0,21570,164290,962121737,3 529 0,143380,766960,623361735,8 530 0,224-0,077290,970951737,1 531 0,222330,361950,903221734,8 532 0,2342-0,240910,941571737,3 533 0,13592-0,825620,545581736,2 534 0,14099-0,812640,56261735,3 535 0,243050,00330,969671737,5 536 0,12677-0,856310,499111736,8 537 0,216910,48360,846211735,5 538 0,2661810,127760,955561736,3 540 0,26111-0,158690,952181738,1 541 0,26438-0,003480,963911737,3 542 0,26336-0,153010,952581736,3 544 0,271930,0780,958871737,6 545 0,19607-0,701080,682521734,4 546 0,088090,948110,304821737,7 550 0,161390,818230,54	521	0,15363	-0,64773	0,74545	1737,1
523 $0,20576$ $-0,22218$ $0,95321$ $1738,4$ 524 $0,19981$ $-0,32715$ $0,9232$ $1737,4$ 525 $0,20134$ $0,32607$ $0,92208$ $1735,6$ 526 $0,215$ $-0,04121$ $0,97546$ $1737,6$ 527 $0,21345$ $-0,15911$ 0.96434 $1738,8$ 528 $0,2157$ $0,16429$ 0.96212 $1737,3$ 529 $0,14338$ $0,76696$ $0,62336$ $1735,8$ 530 $0,224$ $-0,07729$ 0.97095 $1737,1$ 531 $0,22233$ $0,36195$ 0.90322 $1734,8$ 532 $0,23342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,13592$ $-0,82562$ $0,54558$ $1736,2$ 534 $0,14099$ $-0,81264$ 0.5626 $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 544 $0,26448$ $-0,00348$ $0,96391$ $1737,6$ 544 $0,26336$ $-0,15301$ $0,95258$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 544 $0,20726$ $0,67315$ $0,70887$ $1737,6$ 544 $0,25036$ $-0,46311$ $0,8$	522	0,16815	-0,59571	0,78536	1738
524 $0,19981$ $-0,32715$ $0,9232$ $1737,4$ 525 $0,20134$ $0,32607$ $0,92208$ $1735,6$ 526 $0,215$ $-0,04121$ $0,97546$ $1737,6$ 527 $0,21345$ $-0,15911$ $0,96434$ $1738,8$ 528 $0,21557$ $0,16429$ $0,96212$ $1737,3$ 529 $0,14338$ $0,76696$ $0,62336$ $1735,8$ 530 $0,224$ $-0,07729$ $0,97095$ $1737,1$ 531 $0,22233$ $0,36195$ $0,90322$ $1734,8$ 532 $0,23342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,13592$ $-0,82562$ $0,54558$ $1736,2$ 534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,22636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 544 $0,27193$ $0,078$ $0,95887$ $1736,9$ 544 $0,2526$ $-0,46311$ $0,85681$ $1737,6$ 544 $0,25036$ $-0,46311$ $0,8568$	523	0,20576	-0,22218	0,95321	1738,4
525 $0,20134$ $0,32607$ $0,92208$ $1735,6$ 526 $0,215$ $-0,04121$ $0,97546$ $1737,6$ 527 $0,21345$ $-0,15911$ $0,96434$ $1738,8$ 528 $0,21557$ $0,16429$ $0,96212$ $1737,3$ 529 $0,14338$ $0,76696$ $0,62336$ $1735,8$ 530 $0,224$ $-0,07729$ $0,97095$ $1737,1$ 531 $0,22233$ $0,36195$ $0,90322$ $1734,8$ 532 $0,23342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,13592$ $-0,82562$ $0,54558$ $1736,2$ 534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 544 $0,2603$ $0,09038$ $0,95915$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 544 $0,25036$ $-0,46311$ $0,85681$ $1737,8$ 544 $0,25036$ $-0,46311$ $0,95887$ $1736,9$ 548 $0,25036$ $-0,46311$ $0,8$	524	0,19981	-0,32715	0,9232	1737,4
526 $0,215$ $-0,04121$ $0,97546$ $1737,6$ 527 $0,21345$ $-0,15911$ $0,96434$ $1738,8$ 528 $0,21557$ $0,16429$ $0,96212$ $1737,3$ 529 $0,14338$ $0,76696$ $0,62336$ $1735,8$ 530 $0,224$ $-0,07729$ $0,97095$ $1737,1$ 531 $0,22233$ $0,36195$ $0,90322$ $1734,8$ 532 $0,23342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,13592$ $-0,82562$ $0,54558$ $1736,2$ 534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ -0.85631 $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 541 $0,26448$ $-0,00348$ $0,96391$ $1737,3$ 542 $0,26336$ $-0,15301$ $0,95258$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 546 $0,08809$ $0,94811$ $0,30482$ $1737,7$ 547 $0,20726$ $0,67315$ $0,70887$ $1736,9$ 548 $0,25036$ $-0,46311$ $0,$	525	0,20134	0,32607	0,92208	1735,6
527 $0,21345$ $-0,15911$ $0,96434$ $1738,8$ 528 $0,21557$ $0,16429$ $0,96212$ $1737,3$ 529 $0,14338$ $0,76696$ $0,62336$ $1735,8$ 530 $0,224$ $-0,07729$ $0,97095$ $1737,1$ 531 $0,22233$ $0,36195$ $0,90322$ $1734,8$ 532 $0,23342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,13592$ $-0,82562$ $0,54558$ $1736,2$ 534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ -0.85631 $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1737,3$ 542 $0,26336$ $-0,15301$ $0,95258$ $1738,1$ 543 $0,26803$ $0,09038$ $0,95915$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 546 $0,08809$ $0,94811$ $0,30482$ $1737,7$ 547 $0,20726$ $0,67315$ $0,70887$ $1736,6$ 548 $0,25036$ $-0,46311$ $0,85681$ $1735,7$ 550 $0,16139$ $0,81823$ $0,$	526	0,215	-0,04121	0,97546	1737,6
528 $0,21557$ $0,16429$ $0,96212$ $1737,3$ 529 $0,14338$ $0,76696$ $0,62336$ $1735,8$ 530 $0,224$ $-0,07729$ $0,97095$ $1737,1$ 531 $0,22233$ $0,36195$ $0,90322$ $1734,8$ 532 $0,23342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,13592$ $-0,82562$ $0,54558$ $1736,2$ 534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 541 $0,26448$ $-0,00348$ $0,96391$ $1737,3$ 542 $0,26336$ $-0,15301$ $0,95258$ $1738,3$ 543 $0,26803$ $0,09038$ $0,95915$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 546 $0,08809$ $0,94811$ $0,30482$ $1737,7$ 547 $0,20726$ $0,67315$ $0,70887$ $1736,9$ 551 $0,28141$ $-0,20094$ $0,93821$ $1737,9$ 552 $0,21052$ $-0,68414$ 0	527	0,21345	-0,15911	0,96434	1738,8
529 $0,14338$ $0,76696$ $0,62336$ $1735,8$ 530 $0,224$ $-0,07729$ $0,97095$ $1737,1$ 531 $0,22233$ $0,36195$ $0,90322$ $1734,8$ 532 $0,23342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,13592$ $-0,82562$ $0,54558$ $1736,2$ 534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 541 $0,26448$ $-0,00348$ $0,96391$ $1737,3$ 542 $0,26366$ $-0,15301$ $0,95258$ $1738,3$ 543 $0,26803$ $0,09038$ $0,95915$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 546 $0,08099$ $0,94811$ $0,30482$ $1737,7$ 547 $0,20726$ $0,67315$ $0,70887$ $1736,9$ 548 $0,25036$ $-0,46311$ $0,85681$ $1735,7$ 551 $0,28141$ $-0,20094$ $0,93821$ $1737,9$ 552 $0,21052$ $-0,68414$	528	0,21557	0,16429	0,96212	1737,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	529	0,14338	0,76696	0,62336	1735,8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	530	0,224	-0,07729	0,97095	1737,1
532 $0,23342$ $-0,24091$ $0,94157$ $1737,3$ 533 $0,13592$ $-0,82562$ $0,54558$ $1736,2$ 534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ -0.85631 $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 541 $0,26448$ $-0,00348$ $0,96391$ $1737,3$ 542 $0,26336$ $-0,15301$ $0,95258$ $1738,3$ 543 $0,26803$ $0,09038$ $0,95915$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 546 $0,08809$ $0,94811$ $0,30482$ $1737,7$ 547 $0,20726$ $0,67315$ $0,70887$ $1736,9$ 548 $0,25036$ $-0,46311$ $0,85681$ $1735,7$ 550 $0,16139$ $0,81823$ $0,54854$ $1735,7$ 551 $0,28141$ $-0,20094$ $0,93821$ $1737,9$ 552 $0,21052$ $-0,68414$ $0,69689$ $1736,4$ 553 $0,22957$ $-0,61411$ $0,75486$ $1737,8$ 555 $0,25748$ $0,47979$ <td< td=""><td>531</td><td>0,22233</td><td>0,36195</td><td>0,90322</td><td>1734,8</td></td<>	531	0,22233	0,36195	0,90322	1734,8
533 $0,13592$ $-0,82562$ $0,54558$ $1736,2$ 534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ -0.85631 0.49911 $1736,8$ 537 $0,21691$ $0,4836$ 0.84621 $1735,5$ 538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ 0.95556 $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1778,1$ 541 $0,26448$ $-0,00348$ $0,96391$ $1737,3$ 542 $0,26336$ $-0,15301$ $0,95258$ $1738,3$ 543 $0,26803$ $0,09038$ $0,95915$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 546 $0,08809$ $0,94811$ $0,30482$ $1737,7$ 547 $0,20726$ $0,67315$ $0,70887$ $1736,9$ 548 $0,25036$ $-0,46311$ $0,85681$ $1735,7$ 550 $0,16139$ $0,81823$ $0,54854$ $1735,7$ 551 $0,28141$ $-0,20094$ $0,93821$ $1736,4$ 553 $0,28994$ $-0,04697$ $0,95581$ $1738,4$ 554 $0,22957$ $-0,61411$ $0,75486$ $1737,8$ 555 $0,25748$ $0,47979$ $0,83697$ $1735,5$	532	0,23342	-0,24091	0,94157	1737,3
534 $0,14099$ $-0,81264$ $0,5626$ $1735,3$ 535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 541 $0,26448$ $-0,00348$ $0,96391$ $1737,3$ 542 $0,26336$ $-0,15301$ $0,95258$ $1738,3$ 543 $0,26803$ $0,09038$ $0,95915$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 546 $0,08809$ $0,94811$ $0,30482$ $1737,7$ 547 $0,20726$ $0,67315$ $0,70887$ $1736,9$ 548 $0,25036$ $-0,46311$ $0,85119$ $1736,9$ 549 $0,252$ $0,44678$ $0,85681$ $1735,7$ 550 $0,16139$ $0,81823$ $0,54854$ 1735 551 $0,28141$ $-0,20094$ $0,93821$ $1736,4$ 553 $0,22957$ $-0,61411$ $0,75486$ $1737,8$ 555 $0,25748$ $0,47979$ $0,83697$ $1735,5$	533	0,13592	-0,82562	0,54558	1736,2
535 $0,24305$ $0,0033$ $0,96967$ $1737,5$ 536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 541 $0,26448$ $-0,00348$ $0,96391$ $1737,3$ 542 $0,26336$ $-0,15301$ $0,95258$ $1738,3$ 543 $0,26803$ $0,09038$ $0,95915$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 546 $0,08809$ $0,94811$ $0,30482$ $1737,7$ 547 $0,20726$ $0,67315$ $0,70887$ $1736,9$ 548 $0,25036$ $-0,46311$ $0,85119$ $1739,6$ 549 $0,252$ $0,44678$ $0,85681$ $1735,7$ 550 $0,16139$ $0,81823$ $0,54854$ 1735 551 $0,28141$ $-0,20094$ $0,93821$ $1736,4$ 553 $0,2894$ $-0,04697$ $0,95581$ 1738 554 $0,22957$ $-0,61411$ $0,75486$ $1737,8$ 555 $0,25748$ $0,47979$ $0,83697$ $1735,5$	534	0,14099	-0,81264	0,5626	1735,3
536 $0,12677$ $-0,85631$ $0,49911$ $1736,8$ 537 $0,21691$ $0,4836$ $0,84621$ $1735,5$ 538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 541 $0,26448$ $-0,00348$ $0,96391$ $1737,3$ 542 $0,26336$ $-0,15301$ $0,95258$ $1738,3$ 543 $0,26803$ $0,09038$ $0,95915$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 546 $0,08809$ $0,94811$ $0,30482$ $1737,7$ 547 $0,20726$ $0,67315$ $0,70887$ $1736,9$ 548 $0,25036$ $-0,46311$ $0,85119$ $1735,7$ 550 $0,16139$ $0,81823$ $0,54854$ 1735 551 $0,28141$ $-0,20094$ $0,93821$ $1737,9$ 552 $0,21052$ $-0,68414$ $0,69689$ $1736,4$ 553 $0,2894$ $-0,04697$ $0,95581$ 1738 554 $0,22957$ $-0,61411$ $0,75486$ $1737,8$ 555 $0,25748$ $0,47979$ $0,83697$ $1735,5$	535	0,24305	0,0033	0,96967	1737,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	536	0,12677	-0,85631	0,49911	1736,8
538 $0,23636$ $0,35998$ $0,90039$ $1734,8$ 539 $0,26181$ $0,12776$ $0,95556$ $1736,3$ 540 $0,2611$ $-0,15869$ $0,95218$ $1738,1$ 541 $0,26448$ $-0,00348$ $0,96391$ $1737,3$ 542 $0,26336$ $-0,15301$ $0,95258$ $1738,3$ 543 $0,26803$ $0,09038$ $0,95915$ $1738,1$ 544 $0,27193$ $0,078$ $0,95887$ $1737,6$ 545 $0,19607$ $-0,70108$ $0,68252$ $1734,4$ 546 $0,08809$ $0,94811$ $0,30482$ $1737,7$ 547 $0,20726$ $0,67315$ $0,70887$ $1736,9$ 548 $0,25036$ $-0,46311$ $0,85119$ $1735,7$ 550 $0,16139$ $0,81823$ $0,54854$ 1735 551 $0,28141$ $-0,20094$ $0,93821$ $1737,9$ 552 $0,21052$ $-0,68414$ $0,69689$ $1736,4$ 554 $0,22957$ $-0,61411$ $0,75486$ $1737,8$ 555 $0,25748$ $0,47979$ $0,83697$ $1735,5$	537	0,21691	0,4836	0,84621	1735,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	538	0,23636	0,35998	0,90039	1734,8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	539	0,26181	0,12776	0,95556	1736,3
5410,26448-0,003480,963911737,35420,26336-0,153010,952581738,35430,268030,090380,959151738,15440,271930,0780,958871737,65450,19607-0,701080,682521734,45460,088090,948110,304821737,75470,207260,673150,708871736,95480,25036-0,463110,851191739,65490,2520,446780,856811735,75500,161390,818230,5485417355510,28141-0,200940,938211737,95520,21052-0,684140,696891736,45530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	540	0,2611	-0,15869	0,95218	1738,1
5420,26336-0,153010,952581738,35430,268030,090380,959151738,15440,271930,0780,958871737,65450,19607-0,701080,682521734,45460,088090,948110,304821737,75470,207260,673150,708871736,95480,25036-0,463110,851191739,65490,2520,446780,856811735,75500,161390,818230,5485417355510,28141-0,200940,938211737,95520,21052-0,684140,696891736,45530,28994-0,046970,9558117385550,257480,479790,836971735,5	541	0,26448	-0,00348	0,96391	1737,3
5430,268030,090380,959151738,15440,271930,0780,958871737,65450,19607-0,701080,682521734,45460,088090,948110,304821737,75470,207260,673150,708871736,95480,25036-0,463110,851191739,65490,2520,446780,856811735,75500,161390,818230,5485417355510,28141-0,200940,938211737,95520,21052-0,684140,696891736,45530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	542	0,26336	-0,15301	0,95258	1738,3
5440,271930,0780,958871737,65450,19607-0,701080,682521734,45460,088090,948110,304821737,75470,207260,673150,708871736,95480,25036-0,463110,851191739,65490,2520,446780,856811735,75500,161390,818230,5485417355510,28141-0,200940,938211737,95520,21052-0,684140,696891736,45530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	543	0,26803	0,09038	0,95915	1738,1
5450,19607-0,701080,682521734,45460,088090,948110,304821737,75470,207260,673150,708871736,95480,25036-0,463110,851191739,65490,2520,446780,856811735,75500,161390,818230,5485417355510,28141-0,200940,938211737,95520,21052-0,684140,696891736,45530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	544	0,27193	0,078	0,95887	1737,6
5460,088090,948110,304821737,75470,207260,673150,708871736,95480,25036-0,463110,851191739,65490,2520,446780,856811735,75500,161390,818230,5485417355510,28141-0,200940,938211737,95520,21052-0,684140,696891736,45530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	545	0,19607	-0,70108	0,68252	1734,4
5470,207260,673150,708871736,95480,25036-0,463110,851191739,65490,2520,446780,856811735,75500,161390,818230,5485417355510,28141-0,200940,938211737,95520,21052-0,684140,696891736,45530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	546	0,08809	0,94811	0,30482	1737,7
5480,25036-0,463110,851191739,65490,2520,446780,856811735,75500,161390,818230,5485417355510,28141-0,200940,938211737,95520,21052-0,684140,696891736,45530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	547	0,20726	0,67315	0,70887	1736,9
5490,2520,446780,856811735,75500,161390,818230,5485417355510,28141-0,200940,938211737,95520,21052-0,684140,696891736,45530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	548	0,25036	-0,46311	0,85119	1739,6
5500,161390,818230,5485417355510,28141-0,200940,938211737,95520,21052-0,684140,696891736,45530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	549	0,252	0,44678	0,85681	1735,7
5510,28141-0,200940,938211737,95520,21052-0,684140,696891736,45530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	550	0,16139	0,81823	0,54854	1735
5520,21052-0,684140,696891736,45530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	551	0,28141	-0,20094	0,93821	1737,9
5530,28994-0,046970,9558117385540,22957-0,614110,754861737,85550,257480,479790,836971735,5	552	0,21052	-0,68414	0,69689	1736,4
5540,22957-0,614110,754861737,85550,257480,479790,836971735,5	553	0,28994	-0,04697	0,95581	1738
555 0,25748 0,47979 0,83697 1735,5	554	0,22957	-0,61411	0,75486	1737,8
	555	0,25748	0,47979	0,83697	1735,5

	0.0.0.0.0	0.41004	0.0.00.00	1505
556	0,26956	-0,41204	0,86968	1737
557	0,21542	-0,68928	0,69123	1737,5
558	0,27871	-0,35772	0,89206	1739,3
559	0,24121	0,58616	0,7/161	1735,6
560	0,20818	0,71471	0,66642	1736,6
561	0,26745	0,45724	0,84667	1735,9
562	0,29063	0,29574	0,90835	1735,5
563	0,17963	0,80619	0,56195	1736,4
564	0,30241	0,19663	0,93161	1736,4
565	0,22751	-0,68528	0,69068	1736,7
566	0,19932	-0,77653	0,59335	1733,6
567	0,22951	-0,69104	0,68304	1735,3
568	0,30858	-0,24939	0,91902	1739,9
569	0,17879	0,82714	0,52949	1735
570	0,16393	-0,85844	0,48353	1736
571	0,27031	0,53431	0,79902	1735,5
572	0,31979	0,06435	0,94392	1735,8
573	0,31676	0,20129	0,92597	1736,6
574	0,16257	0,86503	0,47166	1735,6
575	0,15813	-0,87308	0,45764	1735,2
576	0,12784	0,92081	0,36822	1737,9
577	0,25111	0,64302	0,72266	1737
578	0,30938	-0,37771	0,87396	1740
579	0,25695	0,64289	0,72074	1737,1
580	0,15746	0,88292	0,44005	1736,3
581	0,28959	0,5075	0,80963	1735,4
582	0,29197	0,52393	0,79821	1735,4
583	0,33503	0,26236	0,90448	1737,4
584	0,27343	-0,6196	0,73432	1736,3
585	0,33408	-0,33747	0,88065	1739
586	0,28819	0,58112	0,75932	1735,8
587	0,21676	-0,79376	0,56567	1735,5
588	0,35161	-0,19187	0,91535	1736,6
589	0,31098	0,49487	0,80958	1735,5
590	0,34045	0.35588	0.8685	1735.4
591	0.24869	-0.73401	0.62964	1735.5
592	0.31401	-0.5204	0.79385	1737.8
593	0,27651	0,66448	0,69192	1735.3
594	0.33974	-0.43285	0.83588	1739.4
595	0.31275	0.56689	0,76047	1735.9
596	0.37723	0.12045	0.91661	1735.5
597	0.36001	0.33607	0.86843	1735.2
598	0.32046	-0.55069	0.77235	1740.3
599	0.17197	-0.89412	0.41088	1736.2
600	0.38057	0.14811	0.91119	1735.5
601	0.38525	0.05374	0.92004	1736.2
602	0.32461	0.55317	0.76526	1735,5
603	0 31081	-0 60909	0 72908	1737.4
604	0 34617	0.60126	0 71777	1735 1
605	0 39859	-0 17708	0.89877	1736.4
005	0,57057	0,17700	0,07077	т, 50, т

606	0,36027	-0,48239	0,79883	1738,6
607	0,40256	0,22732	0,8854	1736,1
608	-0,00025	-0,00076	0,99882	1736
609	0,17271	0,9084	0,3784	1736,5
610	0,18545	-0,89458	0,40356	1735,9
611	0,37231	-0,47611	0,79676	1738,2
612	0,2883	-0,73745	0,6093	1736,5
613	0,32136	-0,66527	0,67324	1737,3
614	0,40438	0,36638	0,8358	1734,9
615	0,41142	-0,34646	0,84307	1738,2
616	0,41275	0,33801	0,84368	1735
617	0,37901	-0,52434	0,76179	1737,1
618	0,4186	-0,3409	0,8413	1737,4
619	0,15177	0,94042	0,30459	1738,3
620	0,44778	0,04033	0,89167	1735,7
621	0,28796	0,76644	0,57192	1735,9
622	0,27187	0,79668	0,53809	1736,5
623	0,45118	-0,03083	0,89063	1736,1
624	0,44949	0,11271	0,88472	1735,9
625	0,44199	0,23888	0,86327	1736,1
626	0,45901	0,02255	0,88644	1735,5
627	0,29632	0,76883	0,56476	1736,2
628	0,40876	0,47435	0,7779	1735,7
629	0,31748	-0,73186	0,60171	1736,8
630	0,46618	-0,10418	0,87647	1734,9
631	0,34855	0,67176	0,65227	1736,5
632	0,47113	-0,07018	0,8776	1735,6
633	0,42185	0,45724	0,78079	1735,2
634	0,47039	0,14082	0,87017	1736,6
635	0,43894	-0,40461	0,80144	1737
636	0,4726	-0,18023	0,86101	1735,6
637	0,4807	-0,03901	0,87444	1735,7
638	0,39416	-0,5851	0,70849	1737,8
639	0,44641	0,3938	0,80127	1735
640	0,48602	-0,04525	0,87073	1735
641	0,19861	0,91286	0,35467	1736,8
642	0,49367	0,05658	0,86661	1736,3
643	0,38179	0,63516	0,66934	1735,7
644	0,50228	0,09311	0,85825	1736
645	0,25382	-0,86394	0,43193	1735,8
646	0,46282	0,40773	0,78589	1736,4
647	0,47076	0,3736	0,79777	1736
648	0,38148	-0.66107	0,64487	1736,7
649	0,4752	-0.7876	0.3893	1736.1
650	0.31649	0.78125	0.53497	1735.2
651	0.50928	-0.11359	0.85118	1735.3
652	0.26565	-0.85621	0.43916	1735.1
653	0.47169	0.41048	0.77931	1736.6
654	0.4361	-0.5429	0.71839	1739
655	0.44053	-0.53107	0.72401	1738.4
	-,	- ,- = = = • •	- , - = - = -	

656 0.50137 0.27772 0.81828 1736.4 657 0.20113 0.92274 0.32641 1736.7 658 0.50542 0.28299 0.81431 1736.9 659 0.26845 0.8599 0.43129 1735.9 660 0.28143 0.84592 0.45072 1736.3 661 0.33551 0.77286 0.53566 1735.3 662 0.50466 -0.31661 0.80074 1734.7 663 0.43497 -0.58304 0.68583 1737.7 664 0.5394 0.07247 0.83824 1737.1 665 0.45719 0.53567 0.70823 1736.4 6666 0.53344 -0.2013 0.81929 1735.5 669 0.13738 0.96796 0.21043 1738.5 670 0.3489 0.70542 0.5189 1736.1 671 0.40197 0.67707 0.61446 1736 672 0.476 0.49424 0.72391 <th></th> <th></th> <th></th> <th></th> <th></th>					
657 0,20113 0,92274 0,32641 1736,7 658 0,0542 0,28299 0,81431 1736,9 660 0,28143 0,84592 0,45072 1736,3 661 0,33551 0,77286 0,53566 1735,3 662 0,50466 -0,31661 0,80074 1734,7 663 0,43497 -0,58304 0,68583 1737,7 664 0,5394 0,07247 0,83824 1737,7 664 0,54017 0,35567 0,70823 1736.8 666 0,5411 0,06131 0,83824 1737,8 666 0,5434 -0,20313 0,81929 1735,5 669 0,13738 0,96796 0,21043 1738,2 670 0,3869 0,70542 0,5189 1736,6 671 0,40197 0,6707 0,61446 1736 673 0,47411 0,49427 0,72698 1737,6 676 0,5421 -0,15472 0,82378	656	0,50137	0,27772	0,81828	1736,4
658 0.50542 0.28299 0.81431 1736.9 659 0.26845 0.8599 0.43129 1735.9 660 0.28143 0.84592 0.45072 1736.3 661 0.33551 0.77286 0.53566 1735.3 662 0.50466 -0.31661 0.80074 1734.7 663 0.43497 -0.58304 0.68583 1737.1 664 0.5394 0.07247 0.83824 1737.1 665 0.45719 0.53567 0.70823 1736.8 666 0.5441 0.06131 0.83586 1736.8 667 0.54097 0.11901 0.83141 1736.4 668 0.53344 -0.20313 0.81929 1735.5 669 0.13738 0.96796 0.21043 1738.2 670 0.3469 0.70542 0.59189 1736.4 671 0.40197 0.67707 0.61446 1736 672 0.4776 0.49427 0.72988 <td>657</td> <td>0,20113</td> <td>0,92274</td> <td>0,32641</td> <td>1736,7</td>	657	0,20113	0,92274	0,32641	1736,7
659 0.26845 0.8599 0.43129 1735.9 660 0.28143 0.84592 0.45072 1736.3 661 0.33551 0.77286 0.53566 1735.3 662 0.50466 -0.31661 0.80074 1734.7 663 0.43497 -0.58304 0.68583 1737.7 664 0.5394 0.07247 0.83824 1737.1 665 0.45719 0.53567 0.70823 1736 666 0.54411 0.06131 0.83846 1735.5 666 0.53344 -0.20313 0.81929 1735.5 6669 0.13738 0.96796 0.21043 1738.2 670 0.3869 0.70542 0.5189 1736.1 671 0.4177 0.6707 0.61446 1736.6 672 0.476 0.49427 0.72698 1737.6 673 0.47471 0.49422 0.72318 1735.4 675 0.38797 -0.15472 0.82378 <td>658</td> <td>0,50542</td> <td>0,28299</td> <td>0,81431</td> <td>1736,9</td>	658	0,50542	0,28299	0,81431	1736,9
660 0.28143 0.84592 0.45072 1736,3 661 0.33551 0.77286 0.53566 1735,3 662 0.50466 -0.31661 0.80074 1734,7 663 0.43497 -0.58304 0.68583 1737,7 664 0.5394 0.07247 0.83824 1737,1 665 0.45719 0.53567 0.70823 1736,8 666 0.54411 0.06131 0.83586 1736,8 667 0.54097 0.11901 0.83141 1736,4 668 0.53344 -0.20313 0.81929 1735,5 669 0.13738 0.96796 0.21043 1738,6 671 0.40197 0.67707 0.61446 1736,6 672 0.476 0.49427 0.72698 1737,6 674 0.54241 -0.15472 0.82378 1735,4 675 0.38797 -0.71215 0.58288 1735,9 676 0.54424 -0.18684 0.8	659	0,26845	0,8599	0,43129	1735,9
661 0.33551 0,77286 0.53366 1735,3 662 0.50466 -0.31661 0.80074 1734,7 663 0.43497 -0.58304 0.68583 1737,1 664 0.5394 0.07247 0.83824 1737,1 665 0.45719 0.53567 0.70823 1736 666 0.54411 0.06131 0.83586 1736.8 667 0.54097 0.11901 0.83141 1736,4 668 0.53344 -0.20313 0.81929 1735,5 669 0.13738 0.96796 0.21043 1738,2 670 0.3869 0.70542 0.59189 1736,6 671 0.40197 0.67707 0.61446 1736,6 672 0.476 0.49427 0.72698 1737,1 674 0.54251 -0.15472 0.82378 1735,1 675 0.38797 -0.71215 0.58288 1735,9 676 0.54441 0.17928 0.81547	660	0,28143	0,84592	0,45072	1736,3
662 0.50466 -0.31661 0.80074 1734,7 663 0.43497 -0.58304 0.68583 1737,7 664 0.5394 0.07247 0.83824 1737,1 665 0.45719 0.53567 0.70823 1736 666 0.54097 0.11901 0.83141 1736,4 668 0.53344 -0.20313 0.81929 1735,5 669 0.13738 0.96796 0.21043 1738,2 670 0.3869 0.70542 0.59189 1736,1 671 0.40197 0.67107 0.61446 1736 672 0.476 0.49427 0.72698 1737,6 673 0.47471 0.49942 0.72391 1737,1 674 0.54251 -0.15472 0.82378 1735,4 675 0.38797 -0.71215 0.58288 1735,9 676 0.54481 0.17928 0.81844 1737,1 677 0.542424 -0.18684 0.81577	661	0,33551	0,77286	0,53566	1735,3
663 0,43497 -0,58304 0,68583 1737,7 664 0,5394 0,07247 0,83824 1737,1 665 0,45719 0,53567 0,70823 1736 666 0,54411 0,06131 0,83586 1736,8 667 0,54097 0,11901 0,83141 1736,4 668 0,53344 -0,20313 0,81929 1735,5 669 0,13738 0,96796 0,21043 1738,2 670 0,3869 0,70542 0,59189 1736,1 671 0,40197 0,67070 0,61446 1736,6 672 0,476 0,49427 0,72698 1737,6 675 0,38797 -0,71215 0,58288 1735,9 676 0,54481 0,17928 0,81844 1737,1 677 0,54424 -0,18648 0,81577 1735,1 678 0,55158 -0,10892 0,82527 1736,4 679 0,44898 0,59201 0,66731	662	0,50466	-0,31661	0,80074	1734,7
664 0,5394 0,07247 0,83824 1737,1 665 0,45719 0,53567 0,70823 1736 666 0,54411 0,06131 0,83586 1736,8 667 0,54097 0,11901 0,83141 1736,4 668 0,53344 -0,20313 0,81929 1735,5 669 0,13738 0,96796 0,21043 1738,2 670 0,3869 0,70542 0,59189 1737,61 671 0,40197 0,67707 0,61446 1736 672 0,476 0,49427 0,72698 1737,1 674 0,54251 -0,15472 0,82378 1735,4 675 0,38797 -0,71215 0,58288 1735,5 676 0,54481 0,17928 0,81844 1737,1 677 0,54424 -0,18684 0,81577 1735,6 679 0,44898 0,59201 0,66731 1735,8 679 0,44898 0,59201 0,65731 </td <td>663</td> <td>0,43497</td> <td>-0,58304</td> <td>0,68583</td> <td>1737,7</td>	663	0,43497	-0,58304	0,68583	1737,7
665 0,45719 0,53567 0,70823 1736 666 0,54407 0,11901 0,83141 1736,8 667 0,54097 0,11901 0,83141 1736,4 668 0,53344 -0,20313 0,81929 1735,5 669 0,13738 0,96796 0,21043 1738,2 670 0,3869 0,70542 0,59189 1736,1 671 0,40197 0,67707 0,61446 1736 672 0,476 0,49427 0,72698 1737,6 673 0,47471 0,49942 0,72391 1737,1 674 0,54251 -0,15472 0,82378 1735,4 675 0,38797 -0,71215 0,58184 1737,1 676 0,54481 0,17928 0,81844 1737,1 677 0,54424 -0,18684 0,81577 1735,6 679 0,44898 0,59201 0,66731 1736,4 681 0,36987 -0,75063 0,54516<	664	0,5394	0,07247	0,83824	1737,1
666 0,54411 0,06131 0,83586 1736,8 667 0,54097 0,11901 0,83141 1736,4 668 0,53344 -0,20313 0,81929 1735,5 669 0,13738 0,96796 0,21043 1738,2 670 0,3869 0,70542 0,59189 1736,1 671 0,40197 0,67707 0,61446 1736,6 672 0,476 0,49427 0,72698 1737,6 673 0,47471 0,49424 0,72391 1737,1 674 0,54251 -0,15472 0,82378 1735,4 675 0,38797 -0,71215 0,58288 1735,9 676 0,54481 0,17928 0,81844 1737,1 677 0,54424 -0,18684 0,81571 1735,1 678 0,55158 -0,10892 0,82527 1735,6 679 0,44898 0,59201 0,66731 1735,9 682 0,29239 0,85162 0,43	665	0,45719	0,53567	0,70823	1736
667 0,54097 0,11901 0,83141 1736,4 668 0,53344 -0,20313 0,81929 1735,5 669 0,13738 0,96796 0,21043 1738,2 670 0,3869 0,07542 0,59189 1736,1 671 0,40197 0,67707 0,61446 1736 672 0,476 0,49427 0,72698 1737,6 673 0,47471 0,49942 0,72391 1737,1 674 0,54251 -0,15472 0,82378 1735,4 675 0,38797 -0,71215 0,58288 1735,9 676 0,54481 0,17928 0,81844 1737,1 677 0,54424 -0,18684 0,81577 1735,6 678 0,55158 -0,10892 0,82527 1735,6 679 0,44898 0,59201 0,66731 1735,8 680 0,26701 -0.87792 0,39501 1736,4 681 0,36987 -0,75063 0,54	666	0,54411	0,06131	0,83586	1736,8
668 0,53344 -0,20313 0,81929 1735,5 669 0,13738 0,96796 0,21043 1738,2 670 0,3869 0,70542 0,59189 1736,1 671 0,40197 0,67707 0,61446 1736 672 0,476 0,49427 0,72698 1737,6 673 0,47471 0,49942 0,72391 1737,1 674 0,54251 -0,15472 0,82378 1735,4 675 0,38797 -0,71215 0,58288 1735,4 676 0,54481 0,17928 0,81844 1737,1 677 0,54424 -0,18684 0,81577 1735,1 678 0,55158 -0,10892 0,82527 1735,6 679 0,44898 0,59201 0,66731 1735,9 682 0,29239 0,85162 0,43214 1735,9 684 0,56323 -0,04684 0,82394 1736,4 685 0,53435 -0,31713 0,77	667	0,54097	0,11901	0,83141	1736,4
669 0,13738 0,96796 0,21043 1738,2 670 0,3869 0,70542 0,59189 1736,1 671 0,40197 0,67707 0,61446 1736 672 0,476 0,49427 0,72698 1737,6 673 0,47471 0,49942 0,72391 1737,1 674 0,54251 -0,15472 0,82378 1735,4 675 0,38797 -0,71215 0,58288 1735,9 676 0,54481 0,17928 0,81844 1737,1 677 0,54424 -0,18684 0,81577 1735,6 679 0,44898 0,59201 0,66731 1735,8 680 0,26701 -0,87792 0,39501 1736,4 681 0,36987 -0,75063 0,54516 1735,9 682 0,29239 0,85162 0,43214 1735,9 683 0,5233 -0,04684 0,82394 1736,6 685 0,53435 -0,3113 0,7747	668	0,53344	-0,20313	0,81929	1735,5
6700.38690.705420.591891736,16710.401970.677070.6144617366720.4760.494270.726981737,66730.474710.499420.723911737,16740.54251-0.154720.823781735,46750.38797-0.712150.582881735,96760.544810.179280.818441737,16770.54424-0.186840.815771735,66780.55158-0.108920.825271735,66790.448980.592010.667311735,86800.26701-0.877920.395011736,46810.36987-0.750630.545161735,96820.292390.851620.432141735,96830.52883-0.0311180.77981735,46840.56323-0.046840.823941736,66850.53435-0.317130.781161734,96860.53079-0.338990.774791735,46870.51796-0.419950.744711736,46890.36330.775830.512461735,16900.576060.168450.798941736,86910.545110.389670.741021736,36930.510540.52250.680041736,36940.483240.5920.643241736,36950.466910.628190.620611736,3696	669	0,13738	0,96796	0,21043	1738,2
6710,401970,677070,6144617366720,4760,494270,726981737,66730,474710,499420,723911737,16740,54251-0,154720,823781735,46750,38797-0,712150,582881735,96760,544810,179280,818441737,16770,54424-0,186840,815771735,16780,55158-0,108920,825271735,66790,448980,592010,667311735,86800,26701-0,877920,395011736,46810,36987-0,750630,545161735,96820,292390,851620,432141735,96830,52833-0,311130,781161734,96840,56323-0,046840,823941736,66850,53435-0,317130,781161734,96860,53079-0,338990,774791735,46870,51796-0,419950,744711737,46880,570030,08360,816411736,86910,545110,389670,714021736,46920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,36950,466910,628190,620611736,26960,430740,696960,571521736,8697<	670	0,3869	0,70542	0,59189	1736,1
6720,4760,494270,726981737,66730,474710,499420,723911737,16740,54251-0,154720,823781735,46750,38797-0,712150,582881735,96760,544810,179280,818441737,16770,54424-0,186840,815771735,16780,55158-0,108920,825271735,66790,448980,592010,667311736,46810,36987-0,750630,545161735,96820,229390,851620,432141735,96830,52883-0,331180,77981735,96840,56323-0,046840,823941736,66850,53435-0,317130,781161734,96860,53079-0,338990,774791735,46870,51796-0,419950,744711737,46880,570030,08360,816411736,86900,576060,168450,798941736,86910,545110,389670,741021736,46920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,36950,466910,628190,620611736,26960,5134-0,33420,74761735,77000,57344-0,33420,74761735,7704	671	0,40197	0,67707	0,61446	1736
673 $0,47471$ $0,49942$ $0,72391$ $1737,1$ 674 $0,54251$ $-0,15472$ $0,82378$ $1735,4$ 675 $0,38797$ $-0,71215$ $0,58288$ $1735,9$ 676 $0,54481$ $0,17928$ $0,81844$ $1737,1$ 677 $0,54424$ $-0,18684$ $0,81577$ $1735,1$ 678 $0,55158$ $-0,10892$ $0,82527$ $1735,6$ 679 $0,44898$ $0,59201$ $0,66731$ $1735,8$ 680 $0,26701$ $-0,87792$ $0,39501$ $1736,4$ 681 $0,36987$ $-0,75063$ $0,54516$ $1735,9$ 682 $0,29239$ $0,85162$ $0,43214$ $1735,9$ 684 $0,56323$ $-0,04684$ $0,82394$ $1736,6$ 685 $0,53435$ $-0,31713$ $0,78116$ $1734,9$ 686 $0,53079$ $-0,33899$ $0,77479$ $1735,4$ 687 $0,51796$ $-0,41995$ $0,74471$ $1737,4$ 688 $0,57003$ $0,0836$ $0,81641$ $1736,8$ 691 $0,54511$ $0,38967$ $0,74102$ $1736,4$ 692 $0,40321$ $-0,73625$ $0,54137$ $1736,1$ 693 $0,51054$ $0,52425$ $0,68004$ $1736,3$ 694 $0,48324$ $0,592$ $0,64324$ $1736,3$ 694 $0,43214$ $0,592$ $0,64324$ $1736,3$ 697 $0,20695$ $0,39373$ $0,27264$ $1738,3$ 698 $0,59688$ $0,16502$ <td< td=""><td>672</td><td>0,476</td><td>0,49427</td><td>0,72698</td><td>1737,6</td></td<>	672	0,476	0,49427	0,72698	1737,6
674 0,54251 -0,15472 0,82378 1735,4 675 0,38797 -0,71215 0,58288 1735,9 676 0,54481 0,17928 0,81844 1737,1 677 0,54424 -0,18684 0,81577 1735,1 678 0,55158 -0,10892 0,82527 1735,6 679 0,44898 0,59201 0,66731 1735,8 680 0,26701 -0,87792 0,39501 1736,4 681 0,36987 -0,75063 0,54516 1735,9 682 0,29239 0,85162 0,43214 1735,9 683 0,52883 -0,31118 0,7798 1735,4 685 0,53435 -0,31713 0,78116 1734,9 686 0,53079 -0,33899 0,77479 1735,4 687 0,51796 -0,41995 0,74471 1737,4 688 0,57003 0,0836 0,81641 1736,8 690 0,54511 0,38967 <t< td=""><td>673</td><td>0,47471</td><td>0,49942</td><td>0,72391</td><td>1737,1</td></t<>	673	0,47471	0,49942	0,72391	1737,1
675 0,38797 -0,71215 0,58288 1735,9 676 0,54481 0,17928 0,81844 1737,1 677 0,54424 -0,18684 0,81577 1735,1 678 0,55158 -0,10892 0,82527 1735,6 679 0,44898 0,59201 0,66731 1735,8 680 0,26701 -0,87792 0,39501 1736,4 681 0,36987 -0,75063 0,54516 1735,9 682 0,29239 0,85162 0,43214 1735,9 683 0,52883 -0,31118 0,7798 1735,9 684 0,56323 -0,04684 0,82394 1736,6 685 0,53435 -0,31713 0,78116 1734,9 686 0,53079 -0,33899 0,77479 1735,4 687 0,51796 -0,41995 0,74471 1736,8 689 0,3633 0,77583 0,51246 1735,1 690 0,57606 0,16845 <t< td=""><td>674</td><td>0,54251</td><td>-0,15472</td><td>0,82378</td><td>1735,4</td></t<>	674	0,54251	-0,15472	0,82378	1735,4
676 $0,54481$ $0,17928$ $0,81844$ $1737,1$ 677 $0,54424$ $-0,18684$ $0,81577$ $1735,1$ 678 $0,55158$ $-0,10892$ $0,82527$ $1735,6$ 679 $0,44898$ $0,59201$ $0,66731$ $1735,8$ 680 $0,26701$ $-0,87792$ $0,39501$ $1736,4$ 681 $0,36987$ $-0,75063$ $0,54516$ $1735,9$ 682 $0,29239$ $0,85162$ $0,43214$ $1735,9$ 683 $0,52883$ $-0,3118$ $0,7798$ $1735,9$ 684 $0,56323$ $-0,04684$ $0,82394$ $1736,6$ 685 $0,53435$ $-0,31713$ $0,78116$ $1734,9$ 686 $0,53079$ $-0,33899$ $0,77479$ $1735,4$ 687 $0,51796$ $-0,41995$ $0,74471$ $1737,4$ 688 $0,57003$ $0,0836$ $0,81641$ $1736,8$ 690 $0,57606$ $0,16845$ $0,79894$ $1736,4$ 692 $0,40321$ $-0,73625$ $0,54137$ $1736,1$ 693 $0,51054$ $0,52425$ $0,68004$ $1736,3$ 694 $0,48324$ $0,592$ $0,64324$ $1736,3$ 694 $0,48324$ $0,6996$ $0,57152$ $1736,8$ 699 $0,53259$ $0,47668$ $0,6974$ $1735,7$ 700 $0,57134$ $-0,3342$ $0,7476$ $1735,5$ 701 $0,36743$ $0,79603$ $0,47927$ $1736,7$ 702 $0,5946$ $0,30641$ $0,7$	675	0,38797	-0,71215	0,58288	1735,9
677 $0,54424$ $-0,18684$ $0,81577$ $1735,1$ 678 $0,55158$ $-0,10892$ $0,82527$ $1735,6$ 679 $0,44898$ $0,59201$ $0,66731$ $1735,8$ 680 $0,26701$ $-0,87792$ $0,39501$ $1736,4$ 681 $0,36987$ $-0,75063$ $0,54516$ $1735,9$ 682 $0,29239$ $0,85162$ $0,43214$ $1735,9$ 683 $0,52883$ $-0,31118$ $0,7798$ $1735,9$ 684 $0,56323$ $-0,04684$ $0,82394$ $1736,6$ 685 $0,53435$ $-0,31713$ $0,77479$ $1735,4$ 686 $0,53079$ $-0,33899$ $0,77479$ $1735,4$ 687 $0,51796$ $-0,41995$ $0,74471$ $1737,4$ 688 $0,57003$ $0,0836$ $0,81641$ $1736,8$ 690 $0,57006$ $0,16845$ $0,79894$ $1736,8$ 691 $0,54511$ $0,38967$ $0,74102$ $1736,4$ 692 $0,40321$ $-0,73625$ $0,54137$ $1736,1$ 693 $0,51054$ $0,52425$ $0,68004$ $1736,3$ 694 $0,48324$ $0,592$ $0,64324$ $1736,1$ 695 $0,46691$ $0,62819$ $0,62061$ $1736,2$ 696 $0,43074$ $0,69696$ $0,57152$ $1736,8$ 699 $0,53259$ $0,47668$ $0,6974$ $1735,7$ 700 $0,57134$ $-0,3342$ $0,7476$ $1735,5$ 701 $0,36743$ $0,79603$	676	0,54481	0,17928	0,81844	1737,1
678 $0,55158$ $-0,10892$ $0,82527$ $1735,6$ 679 $0,44898$ $0,59201$ $0,66731$ $1735,8$ 680 $0,26701$ $-0,87792$ $0,39501$ $1736,4$ 681 $0,36987$ $-0,75063$ $0,54516$ $1735,9$ 682 $0,29239$ $0,85162$ $0,43214$ $1735,9$ 683 $0,52883$ $-0,33118$ $0,7798$ $1735,9$ 684 $0,56323$ $-0,04684$ $0,82394$ $1736,6$ 685 $0,53435$ $-0,31713$ $0,78116$ $1734,9$ 686 $0,53079$ $-0,33899$ $0,77479$ $1735,4$ 687 $0,51796$ $-0,41995$ $0,74471$ $1737,4$ 688 $0,57003$ $0,0836$ $0,81641$ $1736,8$ 689 $0,3633$ $0,77583$ $0,51246$ $1735,1$ 690 $0,57606$ $0,16845$ $0,79894$ $1736,8$ 691 $0,54511$ $0,38967$ $0,74102$ $1736,4$ 692 $0,40321$ $-0,73625$ $0,54137$ $1736,1$ 693 $0,51054$ $0,52425$ $0,68004$ $1736,3$ 694 $0,48324$ $0,592$ $0,64324$ $1736,6$ 695 $0,46691$ $0,62819$ $0,62061$ $1736,3$ 696 $0,43074$ $0,69696$ $0,57152$ $1736,3$ 697 $0,20695$ $0,93973$ $0,27264$ $1738,3$ 699 $0,53259$ $0,47668$ $0,6974$ $1735,5$ 700 $0,57134$ $-0,3342$ 0	677	0,54424	-0,18684	0,81577	1735,1
679 $0,44898$ $0,59201$ $0,66731$ $1735,8$ 680 $0,26701$ $-0,87792$ $0,39501$ $1736,4$ 681 $0,36987$ $-0,75063$ $0,54516$ $1735,9$ 682 $0,29239$ $0,85162$ $0,43214$ $1735,9$ 683 $0,52883$ $-0,33118$ $0,7798$ $1735,9$ 684 $0,56323$ $-0,04684$ $0,82394$ $1736,6$ 685 $0,53435$ $-0,31713$ $0,78116$ $1734,9$ 686 $0,53079$ $-0,33899$ $0,77479$ $1735,4$ 687 $0,51796$ $-0,41995$ $0,74471$ $1737,4$ 688 $0,57003$ $0,0836$ $0,81641$ $1736,8$ 689 $0,3633$ $0,77583$ $0,51246$ $1735,1$ 690 $0,57006$ $0,16845$ $0,79894$ $1736,8$ 691 $0,54511$ $0,38967$ $0,74102$ $1736,4$ 692 $0,40321$ $-0,73625$ $0,54137$ $1736,1$ 693 $0,51054$ $0,52425$ $0,68004$ $1736,3$ 694 $0,48324$ $0,592$ $0,64324$ $1736,1$ 695 $0,46691$ $0,62819$ $0,62061$ $1736,2$ 696 $0,43074$ $0,69696$ $0,57152$ $1736,8$ 699 $0,53259$ $0,47668$ $0,6974$ $1735,7$ 700 $0,57134$ $-0,3342$ $0,7476$ $1735,5$ 701 $0,36743$ $0,79603$ $0,47927$ $1736,2$ 703 $0,513$ $-0,54478$ $0,66$	678	0,55158	-0,10892	0,82527	1735,6
6800,26701-0,877920,395011736,46810,36987-0,750630,545161735,96820,292390,851620,432141735,96830,52883-0,331180,77981735,96840,56323-0,046840,823941736,66850,53435-0,317130,781161734,96860,53079-0,338990,774791735,46870,51796-0,419950,744711737,46880,570030,08360,816411736,86890,36330,775830,512461735,16900,576060,168450,798941736,86910,545110,389670,741021736,46920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,36950,466910,628190,620611736,26960,430740,696960,571521736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,77010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	679	0,44898	0,59201	0,66731	1735,8
681 0,36987 -0,75063 0,54516 1735,9 682 0,29239 0,85162 0,43214 1735,9 683 0,52883 -0,33118 0,7798 1735,9 684 0,56323 -0,04684 0,82394 1736,6 685 0,53435 -0,31713 0,78116 1734,9 686 0,53079 -0,33899 0,77479 1735,4 687 0,51796 -0,41995 0,74471 1737,4 688 0,57003 0,0836 0,81641 1736,8 689 0,3633 0,77583 0,51246 1735,1 690 0,57606 0,16845 0,79894 1736,8 691 0,54511 0,38967 0,74102 1736,4 692 0,40321 -0,73625 0,54137 1736,1 693 0,51054 0,52425 0,68004 1736,3 694 0,48324 0,592 0,64324 1736,1 695 0,46691 0,62819 0,62	680	0,26701	-0,87792	0,39501	1736,4
6820.292390.851620.432141735,96830.52883-0.331180.77981735,96840.56323-0.046840.823941736,66850.53435-0.317130.781161734,96860.53079-0.338990.774791735,46870.51796-0.419950.744711737,46880.570030.08360.816411736,86890.36330.775830.512461735,16900.576060.168450.798941736,86910.545110.389670.741021736,46920.40321-0.736250.541371736,16930.510540.524250.680041736,36940.483240.5920.643241736,16950.466910.628190.620611736,26960.430740.696960.571521736,36970.206950.939730.272641738,36980.596880.165020.784251736,86990.532590.476680.69741735,77000.57134-0.33420.74761735,57010.367430.796030.479271736,77020.579460.306410.753761736,27030.513-0.544780.663011737,77040.503190.571570.6471417377050.56736-0.389830.724571737,1	681	0,36987	-0,75063	0,54516	1735,9
6830,52883-0,331180,77981735,96840,56323-0,046840,823941736,66850,53435-0,317130,781161734,96860,53079-0,338990,774791735,46870,51796-0,419950,744711737,46880,570030,08360,816411736,86890,36330,775830,512461735,16900,576060,168450,798941736,86910,545110,389670,741021736,46920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,16950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	682	0,29239	0,85162	0,43214	1735,9
6840,56323-0,046840,823941736,66850,53435-0,317130,781161734,96860,53079-0,338990,774791735,46870,51796-0,419950,744711737,46880,570030,08360,816411736,86890,36330,775830,512461735,16900,576060,168450,798941736,86910,545110,389670,741021736,46920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,16950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	683	0,52883	-0,33118	0,7798	1735,9
6850,53435-0,317130,781161734,96860,53079-0,338990,774791735,46870,51796-0,419950,744711737,46880,570030,08360,816411736,86890,36330,775830,512461735,16900,576060,168450,798941736,86910,545110,389670,741021736,46920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,16950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	684	0,56323	-0,04684	0,82394	1736,6
6860,53079-0,338990,774791735,46870,51796-0,419950,744711737,46880,570030,08360,816411736,86890,36330,775830,512461735,16900,576060,168450,798941736,86910,545110,389670,741021736,46920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,16950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	685	0,53435	-0,31713	0,78116	1734,9
6870,51796-0,419950,744711737,46880,570030,08360,816411736,86890,36330,775830,512461735,16900,576060,168450,798941736,86910,545110,389670,741021736,46920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,16950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	686	0,53079	-0,33899	0,77479	1735,4
6880,570030,08360,816411736,86890,36330,775830,512461735,16900,576060,168450,798941736,86910,545110,389670,741021736,46920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,16950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	687	0,51796	-0,41995	0,74471	1737,4
6890,36330,775830,512461735,16900,576060,168450,798941736,86910,545110,389670,741021736,46920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,16950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	688	0,57003	0,0836	0,81641	1736,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	689	0,3633	0,77583	0,51246	1735,1
6910,545110,389670,741021736,46920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,16950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,647141737,17050,56736-0,389830,724571737,1	690	0,57606	0,16845	0,79894	1736,8
6920,40321-0,736250,541371736,16930,510540,524250,680041736,36940,483240,5920,643241736,16950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,647141737,17050,56736-0,389830,724571737,1	691	0,54511	0,38967	0,74102	1736,4
6930,510540,524250,680041736,36940,483240,5920,643241736,16950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	692	0,40321	-0,73625	0,54137	1736,1
6940,483240,5920,643241736,16950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	693	0,51054	0,52425	0,68004	1736,3
6950,466910,628190,620611736,26960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	694	0,48324	0,592	0,64324	1736,1
6960,430740,696960,571521736,36970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	695	0,46691	0,62819	0,62061	1736,2
6970,206950,939730,272641738,36980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	696	0,43074	0,69696	0,57152	1736,3
6980,596880,165020,784251736,86990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	697	0,20695	0,93973	0,27264	1738,3
6990,532590,476680,69741735,77000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	698	0,59688	0,16502	0,78425	1736,8
7000,57134-0,33420,74761735,57010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	699	0,53259	0,47668	0,6974	1735,7
7010,367430,796030,479271736,77020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	700	0,57134	-0,3342	0,7476	1735,5
7020,579460,306410,753761736,27030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	701	0,36743	0,79603	0,47927	1736,7
7030,513-0,544780,663011737,77040,503190,571570,6471417377050,56736-0,389830,724571737,1	702	0,57946	0,30641	0,75376	1736,2
7040,503190,571570,6471417377050,56736-0,389830,724571737,1	703	0,513	-0,54478	0,66301	1737.7
705 0,56736 -0,38983 0,72457 1737,1	704	0,50319	0,57157	0,64714	1737
	705	0,56736	-0,38983	0,72457	1737,1

706 0.50824 -0.56754 0.64579 1735.9 707 0.57053 0.38977 0.72136 1736.2 708 0.60126 0.24816 0.75851 1736.7 709 0.61469 0.15351 0.77289 1737 710 0.35944 -0.81694 0.44801 1735.8 711 0.62426 -0.09047 0.77443 1736.6 712 0.4612 -0.67742 0.57024 1735.3 713 0.62838 -0.1 0.76957 1735.6 714 0.59986 -0.33241 0.7266 1736.6 716 0.6359 0.00554 0.77032 1736.7 718 0.61447 0.27053 0.73976 1736.4 719 -0.00025 -0.0088 1736.5 1736.4 721 0.5557 -0.50896 0.65919 1740.2 722 0.40997 0.6294 0.59335 1736.5 721 0.5557 -0.50896 0.65919 <th></th> <th></th> <th></th> <th></th> <th></th>					
707 0,57053 0,38977 0,72136 1736,7 708 0,60126 0,24816 0,75851 1736,7 709 0,61469 0,15351 0,77289 1737 710 0,35944 -0,81694 0,44801 1735,3 711 0,6412 -0,67742 0,57024 1735,3 713 0,62838 -0,1 0,76957 1735,6 714 0,59458 -0,34861 0,7225 1735,6 716 0,6359 0,00554 0,77032 1736,2 717 0,55005 -0,50838 0,66442 1740,2 718 0,61447 0,27053 0,73976 1736,4 719 -0,00025 -0,00076 0,99882 1736,5 721 0,5557 -0,5089 0,65919 1740,2 722 0,49997 0,6294 0,59335 1736,5 723 0,41029 0,7322 0,48241 1737,1 724 0,36325 -0,7322 0,48241 <td>706</td> <td>0,50824</td> <td>-0,56754</td> <td>0,64579</td> <td>1735,9</td>	706	0,50824	-0,56754	0,64579	1735,9
708 0,60126 0,24816 0,75851 1736,7 709 0,61469 0,15351 0,77289 1737 710 0,35944 -0,81694 0,44801 1735,8 711 0,62426 -0,09047 0,77443 1735,6 712 0,4612 -0,67742 0,57024 1735,5 715 0,59986 -0,32241 0,7266 1736,6 716 0,6359 0,00554 0,77032 1736,2 717 0,55005 -0,50838 0,66442 1740,2 718 0,61447 0,27053 0,73976 1736,4 719 -0,00025 -0,00076 0,99882 1736,5 721 0,5557 -0,50896 0,65919 1740,2 723 0,41029 0,77322 0,48241 1737,1 726 0,62428 -0,31134 0,71429 1735,4 727 0,41063 0,77971 0,46975 1735,4 728 0,65576 0,09109 0,7	707	0,57053	0,38977	0,72136	1736,2
709 0.61469 0.15351 0.77289 1737 710 0.35944 -0.81694 0.44801 1735.8 711 0.62426 -0.09047 0.77443 1736 712 0.4612 -0.67742 0.57024 1735.3 713 0.62838 -0.1 0.76957 1735.6 714 0.59986 -0.33241 0.7266 1736.6 716 0.6359 0.00554 0.77032 1736.2 717 0.55005 -0.50838 0.66442 1740.2 718 0.61447 0.27053 0.73976 1736.5 720 0.33491 0.85274 0.39888 1736.5 721 0.5557 -0.50896 0.65919 1740.2 722 0.49997 0.6294 0.59335 1736.5 723 0.41029 0.77322 0.48241 1737.4 726 0.62428 -0.3134 0.71429 1735.4 727 0.41063 0.77971 0.46075	708	0,60126	0,24816	0,75851	1736,7
710 0.35944 -0.81694 0.44801 1735,8 711 0.62426 -0.09047 0.77443 1736 712 0.4612 -0.67742 0.57024 1735,3 713 0.62838 -0.1 0.76957 1735,6 714 0.59458 -0.33241 0.7266 1736,6 716 0.6359 0.00554 0.77032 1736,2 717 0.55005 -0.50838 0.66442 1740,2 718 0.61447 0.27053 0.73976 1736,4 719 -0.00025 -0.00076 0.99882 1736,5 721 0.5557 -0.50896 0.65919 1740,2 722 0.4997 0.6294 0.59335 1736,5 721 0.5557 -0.50896 0.65919 1740,2 724 0.36325 -0.82784 0.42384 1735,4 725 0.29581 0.89127 0.3421 1737,1 726 0.62428 -0.3134 0.71429 </td <td>709</td> <td>0,61469</td> <td>0,15351</td> <td>0,77289</td> <td>1737</td>	709	0,61469	0,15351	0,77289	1737
711 0.62426 -0.09047 0.77443 1736. 712 0.4612 -0.67742 0.57024 1735.3 713 0.62838 -0.1 0.76957 1735.6 714 0.59458 -0.33241 0.7225 1735.6 715 0.59986 -0.33241 0.7266 1736.6 716 0.6359 0.00554 0.7032 1736.2 717 0.55005 -0.50838 0.66442 1740.2 718 0.61447 0.27053 0.73976 1736.4 719 -0.00025 -0.00076 0.99882 1736.5 721 0.5557 -0.50896 0.65919 1740.2 722 0.49997 0.6294 0.59335 1736.5 723 0.41029 0.7322 0.48241 1737.1 726 0.62428 -0.3134 0.71429 1735.4 727 0.41063 0.77971 0.46975 1735.7 728 0.65576 0.09109 0.74778 <td>710</td> <td>0,35944</td> <td>-0,81694</td> <td>0,44801</td> <td>1735,8</td>	710	0,35944	-0,81694	0,44801	1735,8
712 0.4612 -0.67742 0.57024 1735,3 713 0.62838 -0.1 0.76957 1735,6 714 0.59458 -0.33241 0.7225 1735,5 715 0.59986 -0.33241 0.7266 1736,6 716 0.6359 0.00554 0.77032 1736,2 717 0.55005 -0.50838 0.66442 1740,2 718 0.61447 0.27053 0.73976 1736,4 719 -0.00025 -0.00076 0.99882 1736,5 721 0.33491 0.85274 0.39858 1736,5 723 0.41029 0.77322 0.48241 1737,1 724 0.36325 -0.82784 0.42384 1735,4 727 0.41063 0.77971 0.46975 1735,7 728 0.65576 0.09109 0.74778 1735,7 728 0.65024 0.05734 0.74729 1736,1 730 0.661 0.05368 0.74687<	711	0,62426	-0,09047	0,77443	1736
713 0,62838 -0,1 0,76957 1735,6 714 0,59458 -0,34861 0,7225 1735,5 715 0,59986 -0,33241 0,7266 1736,6 716 0,6359 0,00554 0,77032 1736,2 717 0,55005 -0,50838 0,66442 1740,2 718 0,61447 0,27053 0,73976 1736,4 719 -0,00025 -0,00076 0,99882 1736,5 721 0,5557 -0,50896 0,65919 1740,2 722 0,49997 0,6294 0,59335 1736,5 723 0,41029 0,77322 0,48241 1737,7 724 0,36325 -0,82784 0,42384 1735,4 725 0,29581 0,89127 0,3421 1735,4 726 0,66242 0,05734 0,74729 1735,4 727 0,41063 0,7787 0,46975 1735,7 728 0,66124 0,05629 0,5614 <td>712</td> <td>0,4612</td> <td>-0,67742</td> <td>0,57024</td> <td>1735,3</td>	712	0,4612	-0,67742	0,57024	1735,3
714 0.59458 -0.33241 0.7225 1735,5 715 0.59986 -0.33241 0.7266 1736,6 716 0.6359 0.00554 0.77032 1736,2 717 0.55005 -0.50838 0.66442 1740,2 718 0.61447 0.27053 0.73976 1736,4 719 -0.00025 -0.00076 0.99882 1736,5 720 0.33491 0.85274 0.39858 1736,5 721 0.5557 -0.50896 0.65919 1740,2 722 0.49997 0.6294 0.59335 1736,5 723 0.41029 0.77322 0.48241 1737,1 726 0.29581 0.89127 0.3421 1735,4 727 0.41063 0.77971 0.46975 1735,7 728 0.65676 0.09109 0.74778 1736,3 731 0.50188 0.65629 0.56154 1736,3 732 0.60247 -0.36457 0.693	713	0,62838	-0,1	0,76957	1735,6
715 0,5986 -0,33241 0,7266 1736,6 716 0,6359 0,00554 0,77032 1736,2 717 0,55005 -0,50838 0,66442 1740,2 718 0,61447 0,27053 0,73976 1736,2 719 -0,00025 -0,00076 0,99882 1736,5 721 0,5557 -0,50896 0,65919 1740,2 722 0,49997 0,6294 0,59335 1736,5 723 0,41029 0,77322 0,48241 1737,1 724 0,36325 -0,82784 0,42384 1735,4 725 0,29581 0,89127 0,3421 1737,1 726 0,652428 -0,31134 0,71429 1736,1 729 0,66024 0,05734 0,74778 1736,6 731 0,50188 0,74687 1736,3 732 0,62047 -0,36457 0,69358 1737,2 733 0,48946 -0,67787 0,54551 17	714	0,59458	-0,34861	0,7225	1735,5
716 0.6359 0.00554 0.77032 1736,2 717 0.55005 -0.50838 0.66442 1740,2 718 0.61447 0.27053 0.73976 1736,4 719 -0.00025 -0.00076 0.99882 1736 720 0.33491 0.85274 0.39858 1736,5 721 0.5557 -0.50896 0.65919 1740,2 722 0.49997 0.6294 0.59335 1736,5 723 0.41029 0.77322 0.48241 1737,1 726 0.62428 -0.31134 0.71429 1735,4 727 0.41063 0.77971 0.44697 1735,7 728 0.65576 0.09109 0.74778 1736,3 731 0.50188 0.65629 0.56154 1736,3 732 0.66024 0.05737 0.54551 1735,3 733 0.48946 -0.67787 0.54551 1736,3 734 0.22827 0.94029 0.252	715	0,59986	-0,33241	0,7266	1736,6
717 0,55005 -0,50838 0,66442 1740,2 718 0,61447 0,27053 0,73976 1736,4 719 -0,00025 -0,00076 0,99882 1736,5 720 0,33491 0,85274 0,39858 1736,5 721 0,5557 -0,50896 0,65919 1740,2 722 0,49997 0,6294 0,59335 1736,5 723 0,41029 0,77322 0,48241 1737,1 724 0,36325 -0,82784 0,42384 1735,4 727 0,41063 0,77971 0,46975 1735,7 728 0,65576 0,09109 0,74778 1736,1 730 0,661 0,05368 0,74687 1736,3 731 0,50188 0,65629 0,56154 1736,3 733 0,48946 -0,67787 0,54551 1735,2 734 0,22827 0,94029 0,25285 1738,3 735 0,65604 -0,20177 0,7	716	0,6359	0,00554	0,77032	1736,2
718 0.61447 0.27053 0.73976 1736,4 719 -0.00025 -0.00076 0.99882 1736,5 720 0.33491 0.85274 0.39858 1736,5 721 0.5557 -0.50896 0.65919 1740,2 722 0.49997 0.6294 0.59335 1736,5 723 0.41029 0.77322 0.48241 1737,1 726 0.62428 -0.31134 0.71429 1735,4 727 0.41063 0.77971 0.46975 1735,7 728 0.65576 0.09109 0.74778 1735,9 729 0.66024 0.05734 0.7429 1736,3 730 0.661 0.05368 0.74687 1736,3 732 0.62047 -0.36457 0.69358 1737,2 733 0.48946 -0.67787 0.54551 1736,3 734 0.22827 0.94029 0.25285 1738,4 735 0.65604 -0.20177 0.73	717	0,55005	-0,50838	0,66442	1740,2
719 -0,00025 -0,00076 0,99882 1736 720 0,33491 0,85274 0,39858 1736,5 721 0,5557 -0,50896 0,65919 1740,2 722 0,49997 0,6294 0,59335 1736,5 723 0,41029 0,77322 0,48241 1737,2 724 0,36325 -0,82784 0,42384 1735,4 725 0,29581 0,89127 0,3421 1737,1 726 0,62428 -0,31134 0,71429 1735,7 728 0,65576 0,09109 0,74778 1735,9 729 0,66024 0,05734 0,74729 1736,1 730 0,661 0,05368 0,74687 1736,3 732 0,62047 -0,36457 0,69358 1737,2 733 0,48946 -0,67787 0,54551 1735,2 734 0,22827 0,94029 0,25285 1738,3 735 0,65604 -0,20177 0,725	718	0,61447	0,27053	0,73976	1736,4
720 0,33491 0,85274 0,39858 1736,5 721 0,5557 -0,50896 0,65919 1740,2 722 0,49997 0,6294 0,59335 1736,5 723 0,41029 0,77322 0,48241 1737,2 724 0,36325 -0,82784 0,42384 1735,4 725 0,29581 0,89127 0,3421 1737,1 726 0,62428 -0,31134 0,71429 1735,4 727 0,41063 0,77971 0,46975 1735,7 728 0,65576 0,09109 0,74778 1735,9 729 0,66024 0,05734 0,74729 1736,1 730 0,661 0,05368 0,74687 1736,3 731 0,50188 0,65629 0,56154 1735,2 733 0,48946 -0,67787 0,54551 1735,2 734 0,22827 0,94029 0,25285 1738,3 735 0,65604 -0,20177 0,7258	719	-0,00025	-0,00076	0,99882	1736
721 0,5557 -0,50896 0,65919 1740,2 722 0,49997 0,6294 0,59335 1736,5 723 0,41029 0,77322 0,48241 1737,2 724 0,36325 -0,82784 0,42384 1735,4 725 0,29581 0,89127 0,3421 1737,1 726 0,62428 -0,31134 0,71429 1735,4 727 0,41063 0,77971 0,46975 1735,7 728 0,65576 0,09109 0,74778 1736,1 730 0,661 0,05348 0,74687 1736,3 731 0,50188 0,65629 0,56154 1736,3 732 0,62047 -0,36457 0,69358 1737,2 733 0,48946 -0,67787 0,54551 1738,3 735 0,65604 -0,20177 0,72581 1736,1 737 0,58902 0,48661 0,64562 1737,9 738 0,59734 -0,47759 0,64	720	0,33491	0,85274	0,39858	1736,5
722 0,49997 0,6294 0,59335 1736,5 723 0,41029 0,77322 0,48241 1737,2 724 0,36325 -0,82784 0,42384 1735,4 725 0,29581 0,89127 0,3421 1737,1 726 0,62428 -0,31134 0,71429 1735,4 727 0,41063 0,77971 0,46975 1735,7 728 0,65576 0,09109 0,74778 1736,1 730 0,661 0,05368 0,74687 1736,1 731 0,50188 0,65629 0,56154 1736,3 732 0,62047 -0,36457 0,69358 1737,2 733 0,48946 -0,67787 0,54551 1735,2 734 0,22827 0,94029 0,25285 1738,3 735 0,65604 -0,20177 0,72581 1736,3 737 0,58902 0,48661 0,64502 1737,9 738 0,59734 -0,47759 0,66	721	0,5557	-0,50896	0,65919	1740,2
723 $0,41029$ $0,77322$ $0,48241$ $1737,2$ 724 $0,36325$ $-0,82784$ $0,42384$ $1735,4$ 725 $0,29581$ $0,89127$ $0,3421$ $1737,1$ 726 $0,62428$ $-0,31134$ $0,71429$ $1735,4$ 727 $0,41063$ $0,77971$ $0,46975$ $1735,7$ 728 $0,65576$ $0,09109$ $0,74778$ $1735,9$ 729 $0,66024$ $0,05734$ $0,74729$ $1736,1$ 730 $0,661$ $0,05368$ $0,74687$ $1736,3$ 731 $0,50188$ $0,65629$ $0,56154$ $1736,3$ 732 $0,62047$ $-0,36457$ $0,69358$ $1737,2$ 733 $0,48946$ $-0,67787$ $0,54551$ $1735,2$ 734 $0,22827$ $0,94029$ $0,25285$ $1738,3$ 735 $0,65604$ $-0,20177$ $0,72581$ $1736,3$ 736 $0,67035$ $0,0845$ $0,73567$ $1736,1$ 737 $0,58902$ $0,48661$ $0,64502$ $1737,9$ 738 $0,59734$ $-0,47759$ $0,64568$ $1739,7$ 740 $0,53933$ $-0,61581$ $0,57363$ $1737,4$ 741 $0,67335$ $0,1876$ $0,71433$ $1737,4$ 742 $0,68008$ $-0,1377$ $0,71433$ $1737,4$ 743 $0,65973$ $0,37715$ $0,64861$ $1736,7$ 744 $0,68045$ $-0,01343$ $0,72237$ $1735,8$ 745 $0,4564$ $0,75002$ $0,47675$ $1736,7$ 748	722	0,49997	0,6294	0,59335	1736,5
724 $0,36325$ $-0,82784$ $0,42384$ $1735,4$ 725 $0,29581$ $0,89127$ $0,3421$ $1737,1$ 726 $0,62428$ $-0,31134$ $0,71429$ $1735,4$ 727 $0,41063$ $0,77971$ $0,46975$ $1735,7$ 728 $0,65576$ $0,09109$ $0,74778$ $1735,9$ 729 $0,66024$ $0,05734$ $0,74729$ $1736,1$ 730 $0,661$ $0,05368$ $0,74687$ $1736,3$ 731 $0,50188$ $0,65629$ $0,56154$ $1736,3$ 732 $0,62047$ $-0,36457$ $0,69358$ $1737,2$ 733 $0,48946$ $-0,67787$ $0,54551$ $1735,2$ 734 $0,22827$ $0,94029$ $0,25285$ $1738,3$ 735 $0,65604$ $-0,20177$ $0,72581$ $1736,3$ 736 $0,67035$ $0,0845$ $0,73567$ $1736,1$ 737 $0,58902$ $0,48661$ $0,64502$ $1737,9$ 738 $0,59734$ $-0,47759$ $0,64568$ $1739,7$ 739 $0,58517$ $-0,51262$ $0,62628$ $1735,9$ 740 $0,53933$ $-0,61581$ $0,57363$ $1737,4$ 741 $0,65973$ $0,37715$ $0,64861$ $1736,5$ 744 $0,68048$ $-0,13777$ $0,71847$ $1736,5$ 744 $0,68945$ $-0,01343$ $0,7237$ $1735,8$ 745 $0,4564$ $0,75002$ $0,47675$ $1736,5$ 746 $0,55072$ $0,60303$	723	0,41029	0,77322	0,48241	1737,2
725 $0,29581$ $0,89127$ $0,3421$ $1737,1$ 726 $0,62428$ $-0,31134$ $0,71429$ $1735,4$ 727 $0,41063$ $0,77971$ $0,46975$ $1735,7$ 728 $0,65576$ $0,09109$ $0,74778$ $1735,9$ 729 $0,66024$ $0,05734$ $0,74729$ $1736,1$ 730 $0,661$ $0,05368$ $0,74687$ $1736,3$ 731 $0,50188$ $0,65629$ $0,56154$ $1736,3$ 732 $0,62047$ $-0,36457$ $0,69358$ $1737,2$ 733 $0,48946$ $-0,67787$ $0,54551$ $1735,2$ 734 $0,22827$ $0,94029$ $0,25285$ $1738,3$ 735 $0,65604$ $-0,20177$ $0,72581$ $1736,3$ 736 $0,67035$ $0,0845$ $0,73667$ $1736,1$ 737 $0,58902$ $0,48661$ $0,64502$ $1737,9$ 738 $0,59734$ $-0,47759$ $0,64568$ $1739,7$ 739 $0,58517$ $-0,51262$ $0,62628$ $1735,9$ 740 $0,53933$ $-0,61581$ $0,57363$ $1737,4$ 741 $0,67355$ $0,1876$ $0,71433$ $1737,1$ 744 $0,68048$ $-0,13477$ $0,71847$ $1736,5$ 744 $0,68045$ $0,75002$ $0,47675$ $1736,5$ 744 $0,68045$ $0,2003$ $0,57506$ $1736,5$ 744 $0,68045$ $0,20427$ $0,69809$ $1734,4$ 749 $0,68444$ $0,19037$ $0,$	724	0,36325	-0,82784	0,42384	1735,4
726 $0,62428$ $-0,31134$ $0,71429$ $1735,4$ 727 $0,41063$ $0,77971$ $0,46975$ $1735,7$ 728 $0,65576$ $0,09109$ $0,74778$ $1735,9$ 729 $0,66024$ $0,05734$ $0,74729$ $1736,11$ 730 $0,661$ $0,05368$ $0,74687$ 1736 731 $0,50188$ $0,65629$ $0,56154$ $1736,32$ 732 $0,62047$ $-0,36457$ $0,69358$ $1737,22$ 733 $0,48946$ $-0,67787$ $0,54551$ $1735,22$ 734 $0,22827$ $0,94029$ $0,25285$ $1738,33$ 735 $0,65604$ $-0,20177$ $0,72581$ $1736,33$ 736 $0,67035$ $0,0845$ $0,73567$ $1736,13$ 737 $0,58902$ $0,48661$ $0,64502$ $1737,9$ 738 $0,59734$ $-0,47759$ $0,64568$ $1739,7$ 739 $0,58517$ $-0,51262$ $0,62628$ $1735,9$ 740 $0,53933$ $-0,61581$ $0,57363$ $1737,4$ 742 $0,68008$ $-0,13777$ $0,71433$ $1737,14$ 743 $0,65973$ $0,37715$ $0,64861$ $1736,5$ 744 $0,68945$ $-0,01343$ $0,72237$ $1735,88$ 745 $0,4564$ $0,75002$ $0,47675$ $1736,776,748$ 744 $0,68945$ $-0,01343$ $0,72237$ $1735,88$ 745 $0,64568$ $-0,35443$ $0,669$ $1734,4749$ 746 $0,55072$	725	0,29581	0,89127	0,3421	1737,1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	726	0,62428	-0,31134	0,71429	1735,4
728 $0,65576$ $0,09109$ $0,74778$ $1735,9$ 729 $0,66024$ $0,05734$ $0,74729$ $1736,1$ 730 $0,661$ $0,05368$ $0,74687$ 1736 731 $0,50188$ $0,65629$ $0,56154$ $1736,3$ 732 $0,62047$ $-0,36457$ $0,69358$ $1737,2$ 733 $0,48946$ $-0,67787$ $0,54551$ $1735,22$ 734 $0,22827$ $0,94029$ $0,25285$ $1738,33$ 735 $0,65604$ $-0,20177$ $0,72581$ $1736,136,136,136,136,136,136,136,136,136,1$	727	0,41063	0,77971	0,46975	1735,7
729 $0,66024$ $0,05734$ $0,74729$ $1736,1$ 730 $0,661$ $0,05368$ $0,74687$ 1736 731 $0,50188$ $0,65629$ $0,56154$ $1736,3$ 732 $0,62047$ $-0,36457$ $0,69358$ $1737,2$ 733 $0,48946$ $-0,67787$ $0,54551$ $1735,2$ 734 $0,22827$ $0,94029$ $0,25285$ $1738,3$ 735 $0,65604$ $-0,20177$ $0,72581$ $1736,3$ 736 $0,67035$ $0,0845$ $0,73567$ $1736,1$ 737 $0,58902$ $0,48661$ $0,64502$ $1737,9$ 738 $0,59734$ $-0,47759$ $0,64568$ $1739,7$ 739 $0,58517$ $-0,51262$ $0,62628$ $1735,9$ 740 $0,53933$ $-0,61581$ $0,57363$ $1737,4$ 741 $0,67335$ $0,1876$ $0,71433$ $1737,1$ 742 $0,68008$ $-0,13777$ $0,71847$ $1736,5$ 744 $0,65973$ $0,37715$ $0,64861$ $1736,5$ 744 $0,65972$ $0,60303$ $0,57506$ $1736,5$ 746 $0,55072$ $0,60303$ $0,57506$ $1736,7$ 748 $0,65008$ $-0,35443$ $0,669$ $1734,4$ 749 $0,68444$ $0,19037$ $0,70262$ $1736,7$ 750 $0,68455$ $0,20427$ $0,69809$ $1736,17$ 751 $0,6748$ $0,27512$ $0,68433$ $1737,5$ 752 $0,30425$ $0,90248$ $0,30$	728	0,65576	0,09109	0,74778	1735,9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	729	0,66024	0,05734	0,74729	1736,1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	730	0,661	0,05368	0,74687	1736
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	731	0,50188	0,65629	0,56154	1736,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	732	0,62047	-0,36457	0,69358	1737,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	733	0,48946	-0,67787	0,54551	1735,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	734	0,22827	0,94029	0,25285	1738,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	735	0,65604	-0,20177	0,72581	1736,3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	736	0,67035	0,0845	0,73567	1736,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	737	0,58902	0,48661	0,64502	1737,9
7390,58517-0,512620,626281735,97400,53933-0,615810,573631737,47410,673350,18760,714331737,17420,68008-0,137770,718471736,17430,659730,377150,648611736,57440,68945-0,013430,722371735,87450,45640,750020,476751736,57460,550720,603030,5750617367480,65008-0,354430,6691734,47490,684440,190370,702621736,77500,684550,204270,698091736,17510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	738	0,59734	-0,47759	0,64568	1739,7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	739	0,58517	-0,51262	0,62628	1735,9
7410,673350,18760,714331737,17420,68008-0,137770,718471736,17430,659730,377150,648611736,57440,68945-0,013430,722371735,87450,45640,750020,476751736,57460,550720,603030,5750617367470,231080,942180,239471736,77480,65008-0,354430,6691734,47490,684550,204270,698091736,17510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	740	0,53933	-0,61581	0,57363	1737,4
7420,68008-0,137770,718471736,17430,659730,377150,648611736,57440,68945-0,013430,722371735,87450,45640,750020,476751736,57460,550720,603030,5750617367470,231080,942180,239471736,77480,65008-0,354430,6691734,47490,684440,190370,702621736,77500,684550,204270,698091736,17510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	741	0,67335	0,1876	0,71433	1737,1
7430,659730,377150,648611736,57440,68945-0,013430,722371735,87450,45640,750020,476751736,57460,550720,603030,5750617367470,231080,942180,239471736,77480,65008-0,354430,6691734,47490,684440,190370,702621736,77500,684550,204270,698091736,17510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	742	0,68008	-0,13777	0,71847	1736,1
7440,68945-0,013430,722371735,87450,45640,750020,476751736,57460,550720,603030,5750617367470,231080,942180,239471736,77480,65008-0,354430,6691734,47490,684440,190370,702621736,77500,684550,204270,698091736,17510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	743	0,65973	0,37715	0,64861	1736,5
7450,45640,750020,476751736,57460,550720,603030,5750617367470,231080,942180,239471736,77480,65008-0,354430,6691734,47490,684440,190370,702621736,77500,684550,204270,698091736,17510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	744	0,68945	-0,01343	0,72237	1735,8
7460,550720,603030,5750617367470,231080,942180,239471736,77480,65008-0,354430,6691734,47490,684440,190370,702621736,77500,684550,204270,698091736,17510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	745	0,4564	0,75002	0,47675	1736,5
7470,231080,942180,239471736,77480,65008-0,354430,6691734,47490,684440,190370,702621736,77500,684550,204270,698091736,17510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	746	0,55072	0,60303	0,57506	1736
7480,65008-0,354430,6691734,47490,684440,190370,702621736,77500,684550,204270,698091736,17510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	747	0,23108	0,94218	0,23947	1736,7
7490,684440,190370,702621736,77500,684550,204270,698091736,17510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	748	0,65008	-0,35443	0,669	1734,4
7500,684550,204270,698091736,17510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	749	0,68444	0,19037	0,70262	1736,7
7510,67480,275120,684331737,57520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	750	0,68455	0,20427	0,69809	1736,1
7520,304250,902480,3046217387530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	751	0,6748	0,27512	0,68433	1737.5
7530,5116-0,675530,528581735,97540,661270,355220,659281736,57550,680090,281260,677071738,1	752	0,30425	0,90248	0,30462	1738
754 0,66127 0,35522 0,65928 1736,5 755 0,68009 0,28126 0,67707 1738,1	753	0.5116	-0,67553	0,52858	1735.9
755 0,68009 0,28126 0,67707 1738,1	754	0,66127	0,35522	0,65928	1736.5
	755	0,68009	0,28126	0,67707	1738,1

756	0,68352	-0,26002	0,67983	1735,5
757	0,54682	-0,63681	0,54262	1737,2
758	0,43261	0,79223	0,42882	1736,9
759	0,71027	-0,05786	0,69949	1735,6
760	0,69764	-0,20394	0,68525	1736,2
761	0,67128	-0,33774	0,65831	1736,4
762	0,60792	0,52946	0,5909	1737,3
763	0,62336	0,49691	0,60336	1737,7
764	-0,00025	-0,00076	0,99882	1736
765	0,69379	-0,25992	0,66985	1736
766	0,72115	-0,06236	0,68749	1735,1
767	0,46205	-0,7688	0,4391	1735,8
768	0,68509	0,32666	0,65107	1738,1
769	0,70984	0,22237	0,66797	1737,7
770	0,61864	0,52945	0,57922	1736,8
771	-0,00025	-0,00076	0,99882	1736
772	0,62669	0,5186	0,58084	1737,3
773	0,60802	0,56244	0,55841	1736,2
774	0,62236	0,34945	0,70015	1737,8
775	0,71837	-0,23388	0,65353	1736,2
776	0,681	0,39008	0,6184	1736,7
777	0,72833	-0,18146	0,65891	1736
778	0,47635	0,76577	0,42945	1736,1
779	0,58713	-0,61216	0,52675	1735,4
780	0,36848	0,86863	0,32927	1737
781	0,69242	-0,37099	0,61727	1736,4
782	0,47763	-0,7665	0,42407	1734,2
783	0,73571	-0,1965	0,64871	1738,7
784	0,52538	0,7123	0,4636	1736,6
785	0,70927	-0,32413	0,62417	1736,1
786	0,56298	0,6666	0,48622	1736,1
787	0,54229	-0,69561	0,46764	1735,2
788	0,5471	-0,69104	0,46865	1735
789	0,67125	0,46655	0,57354	1735,7
790	0,63445	0,54934	0,54212	1736,5
791	0,75547	-0,10666	0,64403	1735,4
792	0,54726	-0,69794	0,46053	1737
793	0,43879	-0,81854	0,36483	1734,3
794	0,75925	0,18439	0,62176	1735,5
795	0,76496	-0,14816	0,62421	1735,3
796	0,70372	-0,41818	0,57311	1736,8
797	0,56238	0,68789	0,45611	1735,9
798	0,66997	-0,50515	0,5422	1736,4
799	0,71789	-0,3847	0,57724	1735,1
800	0,77133	-0,15258	0,61471	1734,7
801	0,72502	0,37267	0,57772	1736,6
802	0,69092	-0,46857	0,54812	1735,8
803	0,68411	-0,48374	0,54229	1734,7
804	0,78234	0,0114	0,62005	1735,2
805	0,60208	-0,63916	0,4753	1735,4

806	0,7712	0,19977	0,60457	1738,2
807	0,69336	-0,4749	0,54083	1737
808	0,73097	0,37726	0,56819	1737,6
809	0,49521	0,77894	0,38293	1736,9
810	0,7682	0,23744	0,59104	1734,5
811	0,56697	-0,70167	0,42888	1736,1
812	0,7356	-0,38359	0,55693	1736,7
813	0,62906	0,61693	0,47029	1735,9
814	0,5496	0,72626	0,41059	1736,4
815	0,75312	-0,34317	0,55936	1736,2
816	0,79393	0,14614	0,58882	1736,7
817	0,52025	0,76176	0,38444	1737
818	0,80372	0,04174	0,59056	1735
819	0,75784	0,33116	0,55683	1732,9
820	0,77661	-0,26492	0,56977	1736,3
821	0,4072	0,86253	0,29791	1736,8
822	0,80359	-0,10228	0,58369	1735,4
823	0,80104	0,13717	0,58114	1736,5
824	0,60657	0,66441	0,43555	1737,3
825	0,81088	0,03896	0,58071	1734,9
826	0,81069	-0,04904	0,58028	1734,9
827	0,57468	-0,70523	0,40903	1733,7
828	0,65404	0,60198	0,45729	1737,5
829	0,77706	-0,31563	0,54251	1736,2
830	0,59205	-0,69128	0,412	1736,5
831	0,74317	0,42684	0,51339	1736,4
832	0,60773	-0,67455	0,4159	1735,8
833	0,8073	0,20364	0,55012	1734,5
834	0,82531	-0,02149	0,5614	1735,3
835	0,82235	0,10166	0,55779	1736,1
836	0,68912	-0,5546	0,46644	1738,1
837	0,51649	-0,78102	0,34538	1734,7
838	0,55084	0,74782	0,36764	1736,2
839	0,76247	-0,40207	0,50342	1735
840	0,83285	0,0275	0,55032	1735,7
841	0,56908	0,73141	0,3741	1737
842	0,74741	0,45139	0,48384	1735
843	0,57576	0,72691	0,37191	1736,5
844	0,60288	0,69499	0,38883	1736,1
845	0,73028	0,5019	0,46339	1738,1
846	0,72465	0,38071	0,57044	1734,1
847	0,84419	-0,11553	0,51995	1734,9
848	0,84995	0,04301	0,52156	1734,9
849	0,85052	-0,01449	0,52208	1734,8
850	0,85271	0,06671	0,51531	1735,6
851	0,45768	0,84456	0,27517	1736,8
852	0,74568	0,49198	0,44763	1736,8
853	0,84168	0,18723	0,50211	1734,3
854	0,85149	0,12071	0,50752	1735,6
855	0,64171	0,66662	0,3775	1737

856 0,85997 -0,03698 0,50558 1735,1 857 0,76636 -0,4642 0,44078 1735,6 858 0,82374 -0,30797 0,47401 1736,4 859 0,8603 0,13039 0,48965 1735,4 860 0,75114 0,50027 0,42802 1736,1 861 0,84446 0,22761 0,4801 1734,1 862 0,86023 0,15371 0,48543 1737,5 863 0,79368 0,42624 0,43442 1738,4 864 0,87377 0,10867 0,4738 1735,5 865 0,87804 -0,08309 0,46857 1735,9 866 0,87804 -0,03768 0,45225 1737 867 0,85682 -0,22654 0,45747 1735,3 868 0,83749 -0,31651 0,44184 1735,3 869 0,85884 -0,23768 0,45251 1737 870 0,87894 0,23311 1736,3	r				
857 0,76636 -0,4642 0,44078 1735,6 858 0,82374 -0,30797 0,47401 1736,4 859 0,8603 0,13039 0,48965 1735,4 860 0,75114 0,50027 0,42802 1736,1 861 0,84446 0,22761 0,4801 1734,1 862 0,86023 0,15371 0,48543 1737,5 863 0,79368 0,42624 0,43442 1738,4 864 0,87377 0,10867 0,47214 1736,5 865 0,8488 -0,22653 0,4538 1734,2 866 0,87804 -0,08309 0,46857 1735,9 867 0,85682 0,22654 0,45747 1733,3 869 0,85888 -0,23768 0,45225 1737 870 0,7229 -0,57754 0,37731 1736,3 871 0,81643 -0,238 0,4342 1736,3 872 0,54395 0,78948 0,28311 <td>856</td> <td>0,85997</td> <td>-0,03698</td> <td>0,50558</td> <td>1735,1</td>	856	0,85997	-0,03698	0,50558	1735,1
858 0,82374 -0,30797 0,47401 1736,4 859 0,8603 0,13039 0,48965 1735,4 860 0,75114 0,50027 0,42802 1736,1 861 0,84446 0,22761 0,4801 1734,1 862 0,86023 0,15371 0,48543 1737,5 863 0,79368 0,42624 0,43442 1738,4 864 0,87377 0,10867 0,47214 1736,5 865 0,84888 -0,22654 0,45747 1733,5 866 0,8704 -0,08309 0,46857 1735,3 867 0,85888 -0,23768 0,45225 1737 870 0,7229 -0,57754 0,37731 1736,5 871 0,81643 -0,388 0,42519 1736,3 872 0,54395 0,78948 0,28311 1737,5 873 0,8454 0,2329 0,4479 1733,5 874 0,75568 0,50523 0,39578 <td>857</td> <td>0,76636</td> <td>-0,4642</td> <td>0,44078</td> <td>1735,6</td>	857	0,76636	-0,4642	0,44078	1735,6
859 0,8603 0,13039 0,48965 1735,4 860 0,75114 0,50027 0,42802 1736,1 861 0,84446 0,22761 0,4801 1734,1 862 0,86023 0,15371 0,48543 1737,5 863 0,79368 0,42624 0,43442 1738,4 864 0,87377 0,10867 0,47214 1736,5 865 0,84888 -0,22654 0,4538 1734,2 866 0,87804 -0,08309 0,46857 1735,9 867 0.85682 0.22654 0,45747 1735,3 868 0,83749 -0,31651 0,44184 1735,3 869 0,85888 -0,23768 0,45225 1737 870 0,7229 -0,57754 0,37731 1736 871 0,84654 0,2939 0,4379 1733,5 873 0,84654 0,2939 0,45442 1736,6 876 0,88867 -0,00067 0,45633 <td>858</td> <td>0,82374</td> <td>-0,30797</td> <td>0,47401</td> <td>1736,4</td>	858	0,82374	-0,30797	0,47401	1736,4
860 0.75114 0.50027 0.42802 1736.1 861 0.84446 0.22761 0.4801 1734.1 862 0.86023 0.15371 0.48543 1737.5 863 0.79368 0.42624 0.43442 1738.4 864 0.87377 0.10867 0.47214 1736.5 865 0.8488 -0.26263 0.4538 1734.2 866 0.87804 -0.08309 0.46857 1735.9 867 0.85682 0.22654 0.45747 1733.5 868 0.83749 -0.31651 0.44184 1735.3 869 0.8588 -0.23768 0.45225 1737 870 0.72229 -0.57754 0.37731 1736.3 872 0.5495 0.78948 0.28311 1737.5 874 0.76568 0.50523 0.39578 1736.5 875 0.87989 -0.13239 0.45442 1736.6 876 0.80438 -0.2269 0.44365	859	0,8603	0,13039	0,48965	1735,4
861 0.84446 0.22761 0.4801 1734,1 862 0.86023 0.15371 0.48543 1737,5 863 0.79368 0.42624 0.43442 1738,4 864 0.87377 0.10867 0.47214 1736,5 865 0.84888 -0.26263 0.4538 1734,2 866 0.87804 -0.08309 0.46857 1735,9 867 0.85682 0.22654 0.45747 1735,3 868 0.83749 -0.31651 0.44184 1735,3 869 0.85888 -0.23768 0.45225 1737 870 0.7229 -0.5754 0.37731 1736 871 0.81643 -0.238 0.44219 1736,5 872 0.54395 0.78948 0.28311 1737,5 873 0.84654 0.2939 0.4342 1736,6 876 0.88867 -0.00067 0.45633 1736,5 875 0.8738 -0.2046 0.4388	860	0,75114	0,50027	0,42802	1736,1
862 0,86023 0,15371 0,48543 1737,5 863 0,79368 0,42624 0,43442 1738,4 864 0,87377 0,10867 0,47214 1736,5 865 0,84888 -0,02630 0,4538 1734,2 866 0,87804 -0,08309 0,46857 1735,9 867 0,85682 0,22654 0,45747 1733,5 868 0,83749 -0,31651 0,44184 1735,3 869 0,85888 -0,23768 0,45225 1737 870 0,72229 -0,57754 0,37731 1736,3 871 0,84654 0,2939 0,4379 1733,5 873 0,84654 0,2939 0,4379 1736,5 874 0,76568 0,50523 0,39578 1736,5 877 0,8438 -0,2046 0,4388 1736,4 879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 </td <td>861</td> <td>0,84446</td> <td>0,22761</td> <td>0,4801</td> <td>1734,1</td>	861	0,84446	0,22761	0,4801	1734,1
863 0.79368 0.42624 0.43442 1738,4 864 0.87377 0.10867 0.47214 1736,5 865 0.84888 -0.26263 0.4538 1734,2 866 0.87804 -0.08309 0.46857 1735,9 867 0.85682 0.2254 0.45747 1735,3 868 0.83749 -0.31651 0.44184 1735,3 869 0.85888 -0.23768 0.45225 1737 870 0.72229 -0.57754 0.37731 1736,3 871 0.81643 -0.2388 0.42519 1737,5 873 0.84654 0.2939 0.4379 1733,5 874 0.76568 0.50523 0.39578 1736,5 875 0.8738 -0.23269 0.44365 1736,5 876 0.88667 -0.00067 0.45633 1736,3 877 0.86438 -0.23269 0.44426 1736,4 879 0.72432 0.58354 0.365	862	0,86023	0,15371	0,48543	1737,5
864 0,87377 0,10867 0,47214 1736,5 865 0,84888 -0,26263 0,4538 1734,2 866 0,87804 -0,08309 0,46857 1735,9 867 0,85682 0,22654 0,45747 1733,5 868 0,83749 -0,31651 0,44184 1735,3 869 0,85888 -0,23768 0,45225 1737 870 0,72229 -0,57754 0,37731 1736 871 0,81643 -0,388 0,42519 1736,5 873 0,84654 0,2939 0,4379 1733,5 874 0,76568 0,50523 0,39578 1736,5 875 0,87989 -0,13239 0,44542 1736,5 876 0,88667 -0,00067 0,44365 1736,3 877 0,86438 -0,2246 0,43888 1736,3 877 0,86438 -0,2346 0,44365 1736,4 879 0,72432 0,58354 0,36597	863	0,79368	0,42624	0,43442	1738,4
865 0,84888 -0,26263 0,4538 1734,2 866 0,87804 -0,08309 0,46857 1735,9 867 0,85682 0,22654 0,45747 1733,5 868 0,83749 -0,31651 0,44184 1735,3 869 0,85888 -0,23768 0,45225 1737 870 0,72229 -0,57754 0,37731 1736,3 871 0,81643 -0,388 0,42519 1736,3 872 0,54395 0,78948 0,28311 1737,5 873 0,84654 0,2939 0,4379 1733,5 874 0,76568 0,50523 0,39578 1736,6 875 0,88867 -0,00067 0,44365 1736,6 876 0,88867 -0,23269 0,44365 1736,5 877 0,86438 -0,23269 0,44365 1736,6 879 0,72432 0,58354 0,36597 1737,3 880 0,8738 -0,2446 0,438	864	0,87377	0,10867	0,47214	1736,5
866 0.87804 -0.08309 0.46857 1735.9 867 0.85682 0.22654 0.45747 1733.5 868 0.83749 -0.31651 0.44184 1735.3 869 0.85888 -0.23768 0.45225 1737 870 0.72229 -0.57754 0.37731 1736 871 0.81643 -0.388 0.42519 1737.5 873 0.84654 0.2939 0.4379 1735.5 874 0.76568 0.50523 0.39578 1736.5 875 0.87989 -0.13239 0.44542 1736.6 876 0.88867 -0.00067 0.45633 1736.5 877 0.86438 -0.2369 0.44365 1736.4 879 0.72432 0.58354 0.36597 1737.3 880 0.83701 -0.35412 0.41442 1736.1 881 0.52933 0.80841 0.25788 1735.9 884 0.66703 -0.67618 0.308	865	0,84888	-0,26263	0,4538	1734,2
867 0.85682 0.22654 0.45747 1733,5 868 0.83749 -0.31651 0.44184 1735,3 869 0.85888 -0.23768 0.45225 1737 870 0.7229 -0.57754 0.37731 1736,3 871 0.81643 -0.388 0.42519 1736,3 872 0.54395 0.78948 0.28311 1737,5 873 0.84654 0.2939 0.4379 1733,5 874 0.76568 0.50523 0.39578 1736,5 875 0.87989 -0.13239 0.45442 1736,6 876 0.88867 -0.00067 0.45633 1736,3 877 0.86438 -0.2046 0.43888 1736,4 879 0.72432 0.58354 0.36597 1737,3 880 0.83701 -0.35412 0.41442 1736,1 881 0.52933 0.80841 0.25788 1738,3 882 0.85853 0.29439 0.4142	866	0,87804	-0,08309	0,46857	1735,9
868 0,83749 -0,31651 0,44184 1735,3 869 0,85888 -0,23768 0,45225 1737 870 0,72229 -0,57754 0,37731 1736 871 0.81643 -0,388 0,42519 1736,3 872 0,54395 0,78948 0,28311 1737,5 873 0,84654 0.2939 0,4379 1736,5 875 0,87989 -0,13239 0,45442 1736,6 876 0.88867 -0,00067 0,45633 1736,3 877 0,86438 -0,2269 0,44365 1736,5 878 0,8738 -0,2046 0,43888 1736,4 879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,29439 0,41426 1734,1 883 0,66703 -0,67618 0,30896 1736,6 885 0,907 0,05007 0,41431 </td <td>867</td> <td>0,85682</td> <td>0,22654</td> <td>0,45747</td> <td>1733,5</td>	867	0,85682	0,22654	0,45747	1733,5
869 0.85888 -0.23768 0.45225 1737 870 0.72229 -0.57754 0.37731 1736 871 0.81643 -0.388 0.42519 1736,3 872 0.54395 0.78948 0.28311 1737,5 873 0.84654 0.2939 0.4379 1733,5 874 0.76568 0.50523 0.39578 1736,5 875 0.87989 -0.13239 0.45442 1736,6 876 0.88867 -0.00067 0.45633 1736,5 878 0.8738 -0.2046 0.43888 1736,5 879 0.72432 0.58354 0.36597 1737,3 880 0.83701 -0.35412 0.41442 1736,1 881 0.52933 0.80841 0.25788 1738,3 882 0.85853 0.29439 0.41426 1734,1 883 0.66703 -0.67618 0.30896 1736,5 884 0.66703 -0.2712 0.38231<	868	0,83749	-0,31651	0,44184	1735,3
870 0,72229 -0,57754 0,37731 1736 871 0,81643 -0,388 0,42519 1736,3 872 0,54395 0,78948 0,28311 1737,5 873 0,84654 0,2939 0,4379 1733,5 874 0,76568 0,50523 0,39578 1736,5 875 0,87989 -0,13239 0,45442 1736,6 876 0,88867 -0,00067 0,45633 1736,3 877 0,86438 -0,23269 0,44365 1736,5 878 0,8738 -0,2046 0,43888 1736,4 879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,66703 -0,67618 0,30896 1736 884 0,66703 -0,67618 0,31476	869	0,85888	-0,23768	0,45225	1737
871 0,81643 -0,388 0,42519 1736,3 872 0,54395 0,78948 0,28311 1737,5 873 0,84654 0,2939 0,4379 1736,5 874 0,76568 0,50523 0,39578 1736,5 875 0,87989 -0,13239 0,45442 1736,6 876 0,88867 -0,00067 0,45633 1736,5 877 0,86438 -0,23269 0,44365 1736,5 878 0,8738 -0,2046 0,43888 1736,4 879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,66703 -0,67618 0,30896 1736,6 885 0,907 0,05007 0,41431 1735,9 886 0,80611 0,46361 0,36435	870	0,72229	-0,57754	0,37731	1736
872 0,54395 0,78948 0,28311 1737,5 873 0,84654 0,2939 0,4379 1733,5 874 0,76568 0,50523 0,39578 1736,5 875 0,87989 -0,13239 0,45442 1736,6 876 0,88467 -0,00067 0,45633 1736,5 877 0,86438 -0,2246 0,44365 1736,5 878 0,8738 -0,2046 0,43888 1736,4 879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,66703 -0,67618 0,30896 1736 884 0,66703 -0,67618 0,31476 1736,5 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,3117	871	0,81643	-0,388	0,42519	1736,3
873 0,84654 0,2939 0,4379 1733,5 874 0,76568 0,50523 0,39578 1736,5 875 0,87989 -0,13239 0,45442 1736,6 876 0,88867 -0,00067 0,45633 1736,3 877 0,86438 -0,23269 0,44365 1736,5 878 0,8738 -0,2046 0,43888 1736,4 879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,66703 -0,67618 0,30896 1736,6 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1735,9 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,3117	872	0,54395	0,78948	0,28311	1737,5
874 0,76568 0,50523 0,39578 1736,5 875 0,87989 -0,13239 0,45442 1736,6 876 0,88867 -0,00067 0,45633 1736,3 877 0,86438 -0,23269 0,44365 1736,5 878 0,8738 -0,2046 0,43888 1736,4 879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,66703 -0,67618 0,30896 1736 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1735,9 887 0,64008 0,71405 0,28437 1736,7 888 0,72099 0,61748 0,31176 1736,6 889 0,84413 -0,32712 0,382	873	0,84654	0,2939	0,4379	1733,5
875 0,87989 -0,13239 0,45442 1736,6 876 0,88867 -0,00067 0,45633 1736,3 877 0,86438 -0,23269 0,44365 1736,5 878 0,8738 -0,2046 0,43888 1736,4 879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,66584 -0,64914 0,3252 1735,9 884 0,66703 -0,67618 0,30896 1736 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1736,5 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,31176 1736,7 890 0,8743 -0,22712 0,3823	874	0,76568	0,50523	0,39578	1736,5
876 0,88867 -0,00067 0,45633 1736,3 877 0,86438 -0,23269 0,44365 1736,5 878 0,8738 -0,2046 0,43888 1736,4 879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,6584 -0,64914 0,3252 1735,9 884 0,66703 -0,67618 0,30896 1736 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1735,9 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,31176 1736,6 889 0,84413 -0,3938 0,36155 1736,7 890 0,8943 -0,22712 0,38231<	875	0,87989	-0,13239	0,45442	1736,6
877 0,86438 -0,23269 0,44365 1736,5 878 0,8738 -0,2046 0,43888 1736,4 879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,66584 -0,64914 0,3252 1735,9 884 0,66703 -0,67618 0,30896 1736 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1735,9 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,31176 1736,6 889 0,84413 -0,3938 0,36155 1736,7 890 0,8943 -0,22712 0,38231 1735,9 891 0,87109 0,31628 0,37079<	876	0,88867	-0,00067	0,45633	1736,3
878 0,8738 -0,2046 0,43888 1736,4 879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,66584 -0,64914 0,3252 1735,9 884 0,66703 -0,67618 0,30896 1736 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1735,9 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,31176 1736,6 889 0,8413 -0,22712 0,38231 1735,9 891 0,87109 0,31628 0,37079 1734,9 892 0,74949 0,58194 0,31311 1736,7 893 0,874 0,31471 0,36448 <td>877</td> <td>0,86438</td> <td>-0,23269</td> <td>0,44365</td> <td>1736,5</td>	877	0,86438	-0,23269	0,44365	1736,5
879 0,72432 0,58354 0,36597 1737,3 880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,66584 -0,64914 0,3252 1735,9 884 0,66703 -0,67618 0,30896 1736 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1735,9 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,31176 1736,6 889 0,84413 -0,3938 0,36155 1736,7 890 0,8943 -0,22712 0,38231 1735,9 891 0,87109 0,31628 0,37079 1734,9 892 0,74949 0,58194 0,31311 1736,7 893 0,874 0,31471 0,36448 <td>878</td> <td>0,8738</td> <td>-0,2046</td> <td>0,43888</td> <td>1736,4</td>	878	0,8738	-0,2046	0,43888	1736,4
880 0,83701 -0,35412 0,41442 1736,1 881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,68584 -0,64914 0,3252 1735,9 884 0,66703 -0,67618 0,30896 1736 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1735,9 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,31176 1736,6 889 0,84413 -0,3938 0,36155 1736,7 890 0,8943 -0,22712 0,38231 1735,9 891 0,87109 0,31628 0,37079 1734,9 892 0,74949 0,58194 0,31311 1736,7 893 0,874 0,31471 0,36448 1734,4 894 0,87093 0,32813 0,37571 <td>879</td> <td>0,72432</td> <td>0,58354</td> <td>0,36597</td> <td>1737,3</td>	879	0,72432	0,58354	0,36597	1737,3
881 0,52933 0,80841 0,25788 1738,3 882 0,85853 0,29439 0,41426 1734,1 883 0,68584 -0,64914 0,3252 1735,9 884 0,66703 -0,67618 0,30896 1736 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1735,9 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,31176 1736,6 889 0,84413 -0,3938 0,36155 1736,7 890 0,8943 -0,22712 0,38231 1735,9 891 0,87109 0,31628 0,37079 1734,9 892 0,74949 0,58194 0,31311 1736,7 893 0,874 0,31471 0,36448 1734,4 894 0,87093 0,32813 0,3591 1735,9 895 0,76681 0,55634 0,31641	880	0,83701	-0,35412	0,41442	1736,1
882 0,85853 0,29439 0,41426 1734,1 883 0,68584 -0,64914 0,3252 1735,9 884 0,66703 -0,67618 0,30896 1736 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1735,9 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,31176 1736,6 889 0,84413 -0,3938 0,36155 1736,7 890 0,8943 -0,22712 0,38231 1735,9 891 0,87109 0,31628 0,37079 1734,9 892 0,74949 0,58194 0,31311 1736,7 893 0,874 0,31471 0,36448 1734,4 894 0,87093 0,32813 0,3591 1735,9 895 0,76681 0,55634 0,31641 1736,3 896 0,92538 -0,00463 0,3757	881	0,52933	0,80841	0,25788	1738,3
883 0,68584 -0,64914 0,3252 1735,9 884 0,66703 -0,67618 0,30896 1736 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1735,9 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,31176 1736,6 889 0,84413 -0,3938 0,36155 1736,7 890 0,8943 -0,22712 0,38231 1735,9 891 0,87109 0,31628 0,37079 1734,9 892 0,74949 0,58194 0,31311 1736,7 893 0,874 0,31471 0,36448 1734,4 894 0,87093 0,32813 0,3591 1735,9 895 0,76681 0,55634 0,31641 1736 896 0,92538 -0,00463 0,3757 1735,3 898 0,89656 0,25238 0,31067	882	0,85853	0,29439	0,41426	1734,1
884 0,66703 -0,67618 0,30896 1736 885 0,907 0,05007 0,41431 1735,3 886 0,80611 0,46361 0,36435 1735,9 887 0,64008 0,71405 0,28437 1738,5 888 0,72099 0,61748 0,31176 1736,6 889 0,84413 -0,3938 0,36155 1736,7 890 0,8943 -0,22712 0,38231 1735,9 891 0,87109 0,31628 0,37079 1734,9 892 0,74949 0,58194 0,31311 1736,7 893 0,874 0,31471 0,36448 1734,4 894 0,87093 0,32813 0,3591 1735,9 895 0,76681 0,55634 0,31641 1736,3 896 0,92538 -0,00463 0,3757 1735,3 897 0,86897 0,34611 0,31067 1735,3 898 0,89656 0,25238 0,31067	883	0,68584	-0,64914	0,3252	1735,9
8850,9070,050070,414311735,38860,806110,463610,364351735,98870,640080,714050,284371738,58880,720990,617480,311761736,68890,84413-0,39380,361551736,78900,8943-0,227120,382311735,98910,871090,316280,370791734,98920,749490,581940,313111736,78930,8740,314710,364481734,48940,870930,328130,35911733,98950,766810,556340,3164117368960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	884	0,66703	-0,67618	0,30896	1736
8860,806110,463610,364351735,98870,640080,714050,284371738,58880,720990,617480,311761736,68890,84413-0,39380,361551736,78900,8943-0,227120,382311735,98910,871090,316280,370791734,98920,749490,581940,313111736,78930,8740,314710,364481734,48940,870930,328130,35911733,98950,766810,556340,3164117368960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,88430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	885	0,907	0,05007	0,41431	1735,3
8870,640080,714050,284371738,58880,720990,617480,311761736,68890,84413-0,39380,361551736,78900,8943-0,227120,382311735,98910,871090,316280,370791734,98920,749490,581940,313111736,78930,8740,314710,364481734,48940,870930,328130,35911733,98950,766810,556340,3164117368960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	886	0,80611	0,46361	0,36435	1735,9
8880,720990,617480,311761736,68890,84413-0,39380,361551736,78900,8943-0,227120,382311735,98910,871090,316280,370791734,98920,749490,581940,313111736,78930,8740,314710,364481734,48940,870930,328130,35911733,98950,766810,556340,3164117368960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,49010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	887	0,64008	0,71405	0,28437	1738,5
8890,84413-0,39380,361551736,78900,8943-0,227120,382311735,98910,871090,316280,370791734,98920,749490,581940,313111736,78930,8740,314710,364481734,48940,870930,328130,35911733,98950,766810,556340,3164117368960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	888	0,72099	0,61748	0,31176	1736,6
8900,8943-0,227120,382311735,98910,871090,316280,370791734,98920,749490,581940,313111736,78930,8740,314710,364481734,48940,870930,328130,35911733,98950,766810,556340,3164117368960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	889	0,84413	-0,3938	0,36155	1736,7
8910,871090,316280,370791734,98920,749490,581940,313111736,78930,8740,314710,364481734,48940,870930,328130,35911733,98950,766810,556340,3164117368960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	890	0,8943	-0,22712	0,38231	1735,9
8920,749490,581940,313111736,78930,8740,314710,364481734,48940,870930,328130,35911733,98950,766810,556340,3164117368960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	891	0,87109	0,31628	0,37079	1734,9
8930,8740,314710,364481734,48940,870930,328130,35911733,98950,766810,556340,3164117368960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	892	0,74949	0,58194	0,31311	1736,7
8940,870930,328130,35911733,98950,766810,556340,3164117368960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	893	0,874	0,31471	0,36448	1734,4
8950,766810,556340,3164117368960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	894	0,87093	0,32813	0,3591	1733,9
8960,92538-0,004630,37571735,98970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	895	0,76681	0,55634	0,31641	1736
8970,868970,346110,349111735,38980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	896	0,92538	-0,00463	0,3757	1735,9
8980,896560,252380,35961735,38990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	897	0,86897	0,34611	0,34911	1735,3
8990,776260,547540,310671737,19000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	898	0,89656	0,25238	0,3596	1735,3
9000,78032-0,540810,31071736,39010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	899	0,77626	0,54754	0,31067	1737,1
9010,925530,074850,368491736,49020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	900	0,78032	-0,54081	0,3107	1736,3
9020,892880,27730,352551736,79030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	901	0,92553	0,07485	0,36849	1736,4
9030,888430,303480,338481734,69040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	902	0,89288	0,2773	0,35255	1736,7
9040,93464-0,058820,347461736,19050,93105-0,109940,345351736,5	903	0,88843	0,30348	0,33848	1734.6
905 0,93105 -0,10994 0,34535 1736,5	904	0,93464	-0,05882	0,34746	1736.1
	905	0,93105	-0,10994	0,34535	1736,5

906	0,90117	0,27423	0,33256	1736,3
907	0,93219	-0,14932	0,32605	1736
908	0,93107	-0,15931	0,32438	1735,9
909	0,76398	0,58839	0,26145	1736,6
910	0,83627	-0,47168	0,27892	1737,8
911	0,94223	0,12683	0,3085	1737,3
912	0,89802	-0,32957	0,28791	1736,3
913	0,21123	0,06895	0,97294	1734,6
914	0,94505	0,15793	0,28442	1737,2
915	0,9569	-0,01905	0,28478	1735,6
916	0,95818	0,04861	0,27811	1736,2
917	0,95366	-0,14267	0,26423	1737,8